Принципиальная схема электронного удочку

Простая электронная удочка

В девятом номере журнала «Радио» за 1965 год помещено описание бесконтактной удочки — мормышки. Схема этой удочки несколько сложна для начинающих радиолюбителей и содержит много деталей. Питание удочки от батареи напряжением 4,5-9 в тоже является её недостатком.

Описываемая ниже электронная удочка содержит минимальное количество деталей, проста в изготовлении и не требует налаживания. Все её детали, включая источник питания, размещены в корпусе-ручке.

Возбудитель удочки представляет собой несимметричный мультивибратор, генерирующий импульсы постоянной длительности и амплитуды. Частота следования импульсов регулируется в пределах 150…500 импульсов в минуту изменением величины переменного сопротивления R1. Частота следования импульсов и их длительность определяется величиной конденсатора С1.

Рис. 1. Принципиальная схема электронного блока.

Применение в схеме транзисторов различной проводимости позволило до минимума сократить количество деталей. Напряжение источника питания снижено до 1-1,5 в, так как транзистор Т2 работает в ключевом режиме и к обмотке реле Р1 в течение рабочего импульса приложено практически полное напряжение батареи. Напряжение на коллекторе транзистора Т2 в течение рабочего импульса составляет несколько сотых вольта, и несмотря на то, что ток в импульсе достигает 400 мА, мощность, рассеиваемая транзистором, не превышает 10 мВт. К.п.д. такого устройства — более 90%.

В удочке применено реле типа РКМ с сопротивлением обмотки 2,4 ом. При отсутствии низкоомного реле можно обмотку реле любой конструкции перемотать проводом ПЭВ-1 0,41-0,44 до заполнения каркаса. С реле снимаются все контактные группы и используется только электромагнитная система. Пружину, поджимающую якорь, следует оставить.

Источником питания служит один элемент от батареи карманного фонаря КБС-Л-0,5. Можно применить элемент ФБС (ФМЦ), но его ёмкость в два раза меньше, чем у элемента КБС-Л-0,5. Потребляемый ток пропорционален частоте колебаний и на верхней частоте достигает 120 мА. На средней частоте этот ток составляет примерно 50 мА и одного элемента КБС-Л-0,5 хватает на 10 часов работы.

Схема электрической части удочки (электронного блока) приведена на рис. 1, а её монтажная схема — на рис. 2, а. На рис. 2, б показан общий вид собранной удочки без корпуса-ручки.

Детали электронного блока (см. рис. 2) смонтированы на плате из гетинакса толщиной 1,5 мм и размерами 20х60 мм, прикреплённой к основанию реле винтами. К этой же плате прикреплены латунные контакты для подключения батареи питания. Переменное сопротивление R1 типа СПО-0,5 укреплено на кронштейне из латуни толщиной 0,5 мм.

Рис. 2. Монтажная схема электронного блока (а) и общий вид удочки без корпуса-ручки (б):

1 — транзистор Т1; 2 — транзистор Т2; 3 — конденсатор С1; 4 — резистор R1; 5 — резистор R3;
6 — резистор R4; 7 — кнопка Кн; 8 — ручка резистора R1; 9 — плюсовой контакт батареи;
10 — минусовой контакт батареи; 11 — основание реле Р1; 12 — обмотка реле Р1;
13 — якорь реле Р1; 14 — основание электронного блока; 15 — канавка для укладывания лесы (мотовильце);
16 — гильза, куда вставляется хлыстик; 17- хлыстик.

Расположение деталей на плате видно на фото (рис. 2, б) и особых пояснений не требует. Следует лишь сказать, что для крепления деталей на плате нет необходимости применять специальные пистоны или штырьки. Жёсткие выводы обмотки реле, переменного сопротивления и контакты для подключения элемента питания могут быть использованы для крепления и монтажа всех остальных деталей.

В качестве кнопки Кн использован один из снятых с реле контактов, имеющих эбонитовый штифт. Контакт согнут в виде скобы и припаян к кронштейну, на котором установлено переменное сопротивление. При нажатии на штифт пружинящий контакт касается одного из выводов обмотки реле, замыкая минусовую цепь источника питания.

К якорю реле припаяна стреляная гильза от малокалиберного патрона, в которую вставляется хлыстик из винипласта или другого эластичного материала.

Читайте также:  Самодельные домики палатки для рыбалки

Основанием электронного блока служит брусок пенопласта с канавкой по периметру для укладывания лесы (мотовильце).

Корпус-ручка представляет собой полый цилиндр из пенопласта (рис.3), заглушённый с обеих сторон пробками из того же материала. В передней части корпуса-ручки сделано отверстие диаметром 8 мм под хлыстик удочки. В продольный вырез ручки вкладывается сначала элемент, под который подложена коническая пружина от лампового экрана, затем вставляется электронный блок. При изготовлении корпуса-ручки необходимо оставлять зазор для свободного перемещения якоря реле в собранной удочке. Не всегда возможно выточить из пенопласта полый корпус. В этом случае ручку склеивают дихлорэтаном из пластин пенопласта в виде прямоугольной коробки. После склейки ручке можно придать желаемую форму, так как пенопласт обрабатывается очень легко.

Рис. 3. Корпус-ручка с элементом КБС-Л-0,5.

Правильно собранная схема начинает работать сразу, следует лишь учесть, что при очень высоком β обоих транзисторов на верхней частоте мультивибратор может не генерировать. Об этом будет свидетельствовать притянутый якорь реле. В этом случае необходимо заменить любой из транзисторов на транзистор с меньшим β.

Конструкция хорошо работает в том случае, когда произведение коэффициента усиления β обоих транзисторов лежит в пределах 2000…7000.

Электронная удочка

В середине прошлого века Ю.Сверчков сконструировал электронную удочку с источником питания, вмонтированным в корпус. Электроника позволила рыболову-зимнику ловить рыбу мормышками, избавив его от утомительной многочасовой механической работы.

Тогда мною тоже была изготовлена и испытана эта удочка.

Эксперименты позволили удостовериться, что безнасадочным способом можно очень успешно ловить рыбу и даже стабильно облавливать рыболовов, подсаживающих наживки на крючки мормышек.

Для изготовления электронной удочки пригоден практически любой «радио мусор».

Схема приведена на рис.1, элементы конструкции и их номиналы сведены в спецификацию.

Современное состояние электроники позволяет применять малогабаритные электронные компоненты, к примеру, «чиповские» резисторы и конденсаторы, микротранзисторы.

Особенность конструкции – перемотка обмотки реле Р1 (20 метров провода ПЭЛ — 0,41- 0,44 мм). Перемотка обмотки производится виток к витку. В авторском варианте применены устаревшие транзисторы VT1 — П8-П11, VT2 — П13-П16. Их следует заменить современными: VT1 — КТ315Д, VT2 — КТ361Д.

Применимы и транзисторы КТ3102 (VT10) и КТ3107 (VT2). Из «чиповских» транзисторов хорошей заменой могут быть транзисторы КТ3129, КТ3130, КТ3153. Пригодны для замены и КТ315Г1, КТ361Б2.

Электронную плату необходимо смонтировать вертикально, рядом с R1. На свободное место мною была установлена вторая батарея питания, включенная в параллель с первой. Переделка позволила увеличить время непрерывной работы удочки до 10 часов.

Заливка электронной платы эпоксидным компаундом, смешанным с наполнителем (мелкие фракции полистирола) в пропорции 50:50, резко увеличила термозащиту схемы, изолировала ее от влаги, предохранила от повреждений при ударах об лед.

Амплитуда колебаний хлыстика в исходной конструкции регулируется механическим способом, что крайне нежелательно, т.к. наблюдаются сбои в работе конструкции на морозе (при оледенении).

Электронную регулировку амплитуды можно выполнить в соответствии с рис.2. Деталировка и номиналы элементов схемы сведены в спецификацию.

На практике схема оказалась не защищенной и от неправильного включения батареи питания, что приводит к выходу из строя транзисторов VT1 и VT2. Недоработка легко устраняется в соответствии с рис.3 и примечанием к нему.

Все же на морозе работа удочки становится «вялой» и затем колебания хлыстика прекращаются – замерз электролит в батарее питания. «Вылечить» же удочку просто. Надо увеличить размер корпуса до 320 мм в длину, а сам корпус изготовить из фторопластовой трубки диаметром 34 мм с толщиной стенки 2 мм.

В таком корпусе удается разместить четыре батарейки типа АА-R6-1,5v, соединив их параллельно. Можно применить и один аккумулятор малогабаритный (RZР2) с напряжением 2 вольта и емкостью 0,5 А/ч.

В таком исполнении непрерывная работа удочки превышает 50 часов, что более чем достаточно для любой зимней рыбалки. Но и достигнутое меня не удовлетворило, т.к. батарея питания все же отказывала при температуре воздуха ниже минус 12-15 градусов.

Читайте также:  Удочки микадо телескопические с кольцами

Устранить отмеченные недостатки удалось сравнительно просто: к плате, на которой установлен электромагнит (Р1), надо подклеить эластичную мембрану со стороны нерабочего торца реле. Плата помещается в корпус, а внутрь корпуса засыпается измельченный пенопласт.

Затем на свое место устанавливается батарея питания и теплоизолируется дополнительным трубчатым корпусом (из пенопласта) с наружным диаметром 60 мм, надеваемым с некоторым усилием на торец фторопластового корпуса.

В таком исполнении все элементы электронной схемы и батарея питания работают на любом морозе без единого сбоя. Кстати, обмотку реле (Р1) крайне желательно также пропитать эпоксидным компаукдом, что защищает обмотку реле от влаги и повреждений.

В свое время отечественная промышленность выпустила серийно электронную удочку по схеме Ю.Сверчкова. Полагаю, многие рыболовы имеют ее, но… в плачевном состоянии. Из сказанного ясно, что работоспособность удочки может быть легко восстановлена, а модернизация устройства также не составит большого труда.

Резко увеличить надежность устройства можно, изготовив дополнительную плату более совершенного блока питания, т.н. трансвертора. Схема позволяет использовать практически любые элементы питания: R6, R10, R14, R20…

Особенность трансвертора – сохранение работоспособности электронной удочки практически до полного разряда батареи питания (1 вольт) и возможность получения на выходе трансвертора двух разнополярных напряжений (до +7В и более).

Схема трансвертора приведена на рис.4 Деталировка и номиналы указаны на схеме. Кстати, защиту платы трансвертора желательно также выполнить заливкой эпоксидным компаундом, в соответствии с приведенной ранее рекомендацией.

В схеме трансвертора хорошо работают отечественные транзисторы КТ203В (VT2) и КТ602Б (VT1). Чашки броневого сердечника необходимо стянуть любой резьбовой стяжкой, изготовленной из латуни. Выходное напряжение трансвертора зависит от числа витков обмоток трансформатора ТР1.

За основу можно принять: w1 — 15 витков провода ПЭЛ-0,33 мм; w2 — аналогично 1; w3 — 6 витков провода ПЭЛ-0,33 мм. Подбором числа витков w1 и w2 можно установить любые разнополярные напряжения на выходе схемы, но проще применить стабилизатор на микросхемах серий АMS 1117, LD 1117А, IL 1117А, выполненных в корпусах Д-Раск.

К примеру, для нашего случая подходят микросхемные стабилизаторы IL 1117А – Adj (1,25 вольта) и IL 1117А – 1,8 (1,8 вольта). Можно применить и аналог (R1254ЕНхх). Стабилизатор желательно установить на продолговатый алюминиевый теплоотвод, что обеспечит хороший приток тепла в корпус электронной удочки…

Применение стабилизаторов обеспечивает стабильные параметры схемы электронной удочки (частота колебаний и амплитуда колебаний), не зависящие от напряжения батареи питания.

В дальнейшем трансвертор позволяет рыболову модернизировать свою «кормилицу», применив в схеме электронной удочки микросхемные операционные усилители, компараторы или микросхемы КМОП или ТТЛ логики.

Но начинать все же лучше с транзисторной схемы, т.к. значительным опытом электронщика не обладают, к сожалению, многие рыболовы, в т.ч. и рыболовы-спортсмены. Для подготовленных читателей даю справку: номиналы броневого сердечника Б18, из феррита марки М1500НМ3, следующие: КN=4, AL=250.

Скажу сразу: изготовление электронных удочек – дело не менее интересное и сложное, чем создание космических аппаратов. Дело в том, что возможности рыболова не ограничены схемными решениями.

Сегодня очень просто изготовить электронную схему, вырабатывающую электрические колебания с частотами, равными многим миллионам колебаний в секунду. Но электромагнитные преобразователи изначально не могут воспроизвести и менее значительные диапазоны частот.

Так, верхний уровень частот, воспроизводимых, к примеру, реле марки РКМ ограничен величиной 300-400 колебаний в минуту, т.е. равен 5-6 Гц (с учетом веса хлыстика). Сложен и механизм передачи колебаний от хлыстика к мормышке, т.к. даже жесткие современные лески – это все же не идеальные «стержни» сверхмалого диаметра, практически не сжимающиеся и не растягивающиеся.

В реальной практике на леску действует и трение воды, увеличивающееся при росте частоты и амплитуды колебаний мормышки, что требует от конструктора увеличения мощности преобразователей и питания.

Читайте также:  Что нужно иметь для подводной рыбалки

Совершенно непригодны для оснастки электронных удочек мягкие зимние лески. Мечта рыболова-»электронщика», конечно, очень жесткая тонкая леса с большим разрывным усилием.

Понятно, что вес и размеры мормышки также входят в противоречие с практикой. В идеале рыболову нужны маленькие, легкие мормышки, но загнать их на глубину весьма проблематично.

Еще хуже достигнуть гармонии снасти, когда применяются тандемы из мормышек или других обманок, особенно значительного веса.

Анатолий ГОГОЛЕВ, г.Старый Оскол 30 марта 2010 в 15:57

Электронная удочка

Любители-рыболовы знают, что окунь и другая рыба охотнее берут приманку, если леску с крючком заставить вибрировать с частотой от 1,5 до 12 Гц.

Бесконтактная малогабаритная электронная удочка-мормышка позволяет в широких пределах выбирать необходимую частоту при ловле различных рыб. Она проста в изготовлении и не требует налаживания. Все её детали, включая источник питания, размещены в корпусе-ручке.

Схема электрической части удочки (электронного блока) приведена на рис. 1. Задающий генератор удочки представляет собой несимметричный мультивибратор, генерирующий импульсы постоянной длительности и амплитуды. Частота следования импульсов регулируется в пределах от 1,5 до 12 имп/сек изменением сопротивления переменного резистора R1. Частота следования импульсов и их длительность определяются емкостью конденсатора С1 и сопротивления резистора R2.

Рис. 1. Схема электронного блока удочки.

Применение транзисторов различной проводимости позволило создать схему с минимальным количеством деталей. Транзистор Т2 работает в режиме ключа, и к обмотке реле Р1) в течение рабочего импульса приложено практически полное напряжение батареи. Падение напряжения на коллекторе транзистора Т2 в течение рабочего импульса составляет несколько сотых вольта при напряжении источника питания 1-1,5 в.

Системой, приводящей кивочек в действие, служит низкоомный соленоид по типу реле РС-4, РС-52, РЭС-10, РЭС-13, РЭС-22 и др. Обмотка реле намотана проводом ПЭВ-1; 0,41-0,44 мм, сопротивление ее составляет 2,4-2,6 Ом. Потребляемый ток электронного блока на средней частоте 30-50 мА. Переменный резистор R1 с сопротивлением от 4,7 до 10 ком может быть с выключателем, и тогда отпадет необходимость в применении отдельной кнопки или выключателя.

Расположение деталей на плате видно на рис. 2 и особых пояснений не требует. Следует лишь отметить, что в данной конструкции использованы два параллельно включенных конденсатора типа ЭМ4-50-М. Жёсткие выводы обмотки реле, переменного сопротивления и контакты для подключения элемента питания могут быть использованы для крепления и монтажа всех остальных деталей.

Рис. 2. Расположение деталей электронного блока на плате: 1 — регулятор частоты; 2 — соленоид с держателем в сборе; 3 — выключатель кнопочный; 4 — плата; 5 — транзисторы; 6 — конденсаторы.

Рис. 3. Внешний вид электронной удочки: 1 — удилище; 2 — регулятор частоты; 3 — катушка; 4 — выключатель кнопочный; 5 — корпус.

К якорю реле припаяна стреляная гильза от малокалиберного патрона, в которую вставляется хлыстик из винипласта, капрона или другого эластичного материала.

На рис. 3 показан внешний вид удочки с одной катушкой. Элементом питания служит один элемент ФМЦ (6-8 ч работы). Основанием электронного блока служит ручка, представляющая собой полый цилиндр из пенопласта, плотного картона или другого легкого материала. В передней части корпуса ручки сделано отверстие диаметром 8 мм под хлыстик удочки и установлено переменное сопротивление. В задней части — поджимающая пробка — элемент ФМЦ с конической пружиной. При изготовлении ручки необходимо оставить зазор для свободного перемещения якоря реле в собранной удочке.

Правильно собранная схема начинает работать сразу, если коэффициент усиления транзисторов находится в пределах от 50 до 80.

Удочка хорошо себя зарекомендовала при подледном лове на Финском заливе, Чудском озере и в подмосковных водоемах.

Простота схемы и конструкции позволяет изготовить электронную удочку любому начинающему радиолюбителю.

А. Н. МАНЗЮК (г. Ленинград)

По всем вопросам обращайтесь на форум.

Оцените статью
Adblock
detector