Принцип действия навигационного эхолота

Принцип работы эхолота

В настоящее время наиболее совершенными средствами измерения глубин являются эхолоты, которые обеспечивают полную автоматизацию промеров. Определение глубин с помощью эхолотов основано на измерении промежутка времени между моментом посылки ультразвукового сигнала по направлению ко дну и моментом возвращения отраженного от дна эхо-сигнала. По физической природе звук (ультразвук) представляет собой механические колебания частиц упругой среды, источником которых является помещенное в водную среду колеблющееся твердое тело. Колеблясь, источник звука вызывает периодическое сжатие и растяжение прилегающих слоев. Благодаря взаимодействию соседних элементов среды, упругие деформации передаются от одного участка к другому. В результате в водной среде образуются области сгущений и разряжений, которые последовательно удаляются от источника колебаний. Этот процесс называется распространением акустической волны.

Прием и излучение ультразвуковых сигналов у эхолотов производится акустическими антеннами. Основной частью ультразвуковых антенн являются электроакустические преобразователи (вибраторы), в которых происходит преобразование электрической энергии в механическую и наоборот. Поверхность вибратора находится в соприкосновении с водной средой. В режиме излучения сигнала под действием переменного магнитного или электрического поля поверхность вибратора приходит в состояние колебания, передаваемого водной среде. В режиме приема поверхность вибратора под действием отраженной звуковой волны начинает совершать механические колебания, преобразуемые в электрический сигнал. В настоящее время применяются акустические преобразователи, обладающие магнитострикционным или пьезоэлектрическим эффектом.

Явление изменения линейных размеров ферромагнитных тел (железо, никель, кобальт) при изменении напряженности пронизывающего их магнитного поля или изменение магнитного состояния этих тел вследствие их деформации под действием механических сил называется магнитострикцией.

Прямым магнитострикционным эффектом называется явление изменения линейных размеров ферромагнетиков при помещении их в переменное магнитное поле. Прямой эффект используется в передающих антеннах.

Изменение напряженности магнитного поля, создаваемого поляризованным (намагниченным) ферромагнетиком вследствие изменения его линейных размеров под действием внешних сил, называется обратным магнитострикционным эффектом. Обратный эффект используется в приемных антеннах.

Конструктивно магнитострикционный преобразователь представляет собой пакет никелевых пластин, который охватывает катушка (обмотка). В передающих антеннах для создания переменного магнитного поля в пакете пластин через катушку пропускают переменный ток. Находясь в переменном магнитном поле, предварительно намагниченные пластины изменяют свою длину с той же частотой, с которой меняется магнитное поле. Механические колебания вибратора передаются водной среде, что приводит к излучению ультразвукового сигнала.

В приемных антеннах с обмотки снимают электрический сигнал, наводимый переменным магнитным полем, возникающим при деформациях пакета пластин. Отразившийся от дна ультразвуковой сигнал воздействует на предварительно намагниченный пакет никелевых пластин и изменяет его продольные размеры. В результате механических колебаний вибратора возникает магнитное поле, которое наводит электрический импульс в охватывающей пакет обмотке.

Пакет вибратора-излучателя и вибратора-приемника располагают в одном водонепроницаемом корпусе – обтекателе забортного устройства. Забортное устройство снабжено приспособлением для крепления его к борту судна при выполнении промеров глубин. При этом обтекатель забортного устройства устанавливают параллельно поверхности воды. Его нижняя плоскость должна быть заглублена не менее чем на 0,3 м.

Читайте также:  Как своими руками сделать отцеп для воблеров своими руками

Действие пьезоэлектрических преобразователей основано на пьезоэффекте, которым обладают некоторые естественные и искусственные кристаллы. В настоящее время в качестве пьезоэлектрического материала используется керамика титаната бария или цирконата титаната свинца.

Прямым пьезоэлектрическим эффектом называется явление, состоящее в том, что при деформациях сжатия или растяжения поляризованного кристалла, на его поверхности появляются электрические заряды. Этот эффект используется в вибраторах-приемниках.

Обратный пьезоэлектрический эффект заключается в том, что кристалл, помещенный в электрическое поле, будет изменять свои линейные размеры с частотой изменения электрического поля. Это свойство используется в излучающих антеннах.

Поскольку пьезоэлектрические преобразователи обычно обладают и прямым и обратным пьезоэффектом, то у многих эхолотов для излучения и приема ультразвука используется одна и та же антенна.

Принцип определения глубины с помощью эхолота заключается в измерении промежутка времени Dt между посылкой ультразвукового импульса и приходом отраженного от дна эхо-сигнала. Считая скорость распространения ультразвука в воде C0 постоянной, глубина h определится по формуле: . При температуре воды 15°C скорость распространения ультразвука составляет ≈1465 м/с.

Структурная схема эхолота представлена на рис. 20. Блок управления БУ предназначен для включения, настройки, регулировки эхолота и контроля за его работой.

Рис. 20. Структурная схема эхолота

Блок питания БП служит для преобразования постоянного тока источника питания ИП (аккумулятор или судовая сеть) в переменный ток с последующим его выпрямлением в постоянные токи различных напряжений для питания электрических цепей эхолота.

Генератор Г вырабатывает электрические импульсы заданной частоты и подает их на электроакустический преобразователь (вибратор-излучатель ВИ), который излучает ультразвуковой сигнал в водную среду.

Отраженный от дна эхо-сигнал поступает на вибратор-приемник ВП, где преобразуется в электрический сигнал, который после усиления в усилителе У поступает на индикатор И. Индикатор И принимает сигналы, фиксирует их и управляет посылкой следующих импульсов генератором.

По способу определения промежутка времени эхолоты подразделяются на приборы с электромеханической разверткой времени и с электронной разверткой времени. Существуют также комбинированные эхолоты, использующие оба принципа развертки времени.

Электромеханическая развертка времени реализуется в электромеханических самописцах. Электронная – в цифровых указателях глубин, использующих либо цифровой индикатор, либо электронный самописец (жидкокристаллический дисплей) с блоком памяти, либо их комбинацию.

Принцип действия и устройство навигационных эхолотов

Среди средств наблюдения, связи и управления в подводной среде особое место занимают гидроакустические станции (ГАС) активного действия, к которым, в частности, относятся навигационные эхолоты и гидролокаторы.

Навигационный эхолот предназначен для измерения глубин под килем судна-носителя, а гидролокатор — для определения трех координат подводного объекта, находящегося в стороне от судна-носителя: дистанции Д, истинного пеленга (курсового угла) и угла цели θ (угла в вертикальной плоскости).

Измерение дистанции. Принцип измерения дистанции до подводного объекта с помощью эхолота или гидролокатора заключается в измерении промежутка времени между посылкой зондирующего импульса в толщу воды и приходом отраженного от объекта (препятствия) эхо-сигнала к приемнику. Зная скорость распространения звука в воде, можно определить дистанцию до подводного объекта по формуле

Читайте также:  Как держать червей для рыбалки

(3.5)

где с0 — расчетное значение скорости звука в воде (1500 м/с).

Таким образом, задача об определении глубины под килем или дистанции до подводного объекта сводится к измерению весьма малого промежутка времени Δt. Конструктивно она может быть решена различными методами с применением в качестве индикаторных устройств электромеханических указателей глубин, самописцев и цифровых электронных указателей глубин.

Электромеханические указатели глубин предназначаются для визуального отсчета глубин и управления посылками акустических импульсов. Они используются только в эхолотах.

Указатель глубин с механической линейной разверткой времени (рис. 3.25) состоит из вращающейся планки 1 с неоновой лампочкой 2, трансформатора T, кулачков 3 с контактами S1 и S2, электродвигателя 5, коробки скоростей 4 и шкалы, разбитой в единицах глубины. Эхолот с электромеханическим указателем глубины работает следующим образом.

Электродвигатель 5 вращает с постоянной частотой вращения планку 1 с неоновой лампочкой 2 и кулачком 3. В момент прохождения неоновой лампочкой нулевого деления шкалы кулачок 3 размыкает контакт S1, при этом разрывается цепь питания обмотки посылочного реле 6 и его контакты S3 замыкаются под действием пружины 7. Конденсатор С разряжается через обмотку вибратора-излучателя ВИ. При этом образуется колебательный контур, в котором возникают мощные затухающие колебания, и электромеханический преобразователь излучает в воду ультразвуковой импульс большой интенсивности.

Зондирующий импульс в основном максимуме диаграммы направленности распространяется ко дну, а в боковом — к вибратору-приемнику ВП. Боковой акустический импульс в вибраторе-приемнике преобразуется в слабый электрический сигнал, который после усиления поступает на первичную обмотку трансформатора T. Со вторичной обмотки трансформатора напряжение подается на неоновую лампочку 2, Вспышка ламп очки практически совпадает с нулем шкалы.

Рис. 3.26. Работа эхолота с электромехани- ческим указателем глубин

Зондирующий импульс в пределах основного максимума диаграммы направленности доходит до дна, отражается и принимается вибратором-приемником ВП, Слабая э. д. с, возникающая й обмотке вибратора, после усиления заставит вспыхнуть неоновую лампочку против деления шкалы, соответствующего измеряемой глубине. При следующем обороте планки рассмотренный процесс повторится. Из-за быстрого вращения планки с неоно­вой лампочкой нулевые вспышки и отметки глубин сливаются, и по шкале можно непрерывно отсчитывать глубину под килем судна.

Применение неоновой лампочки вызвано тем, что она практически безынерционна, т. е. мгновенно зажигается при подаче напряжения и мгновенно гаснет при отсутствии его; это обеспечивает точный отсчет глубин по шкале. Частота вращения неоновой лампочки должна быть строго постоянной для данного диапазона глубин; это поддерживается с помощью автоматического регулятора частоты вращения электродвигателя.

При регистрации малых глубин необходимо «гасить» нулевую отметку. Это вызвано тем, что накопительный конденсатор разряжается на нулевой отметке, а для фиксации глубины под килем зарядиться не успевает. Схема гашения нулевой отметки действует от контактов S2, которые в момент, соответствующий посылке импульса, отключают накопительный конденсатор от цепи разряда. После прохождения неоновой лампочкой нулевой отметки шкалы схема разряда восстанавливается и импульсы, отраженные даже с малых глубин, отмечаются указателем эхолота.

Читайте также:  Stardew valley как прокачать рыбалку

Самописцы предназначены для автоматической записи измеряемых глубин. В настоящее время наибольшее распространение получают самописцы с линейной механической разверткой в виде бесконечной ленты с закрепленными на ней пером и кулачком (рис. 3.26). Электропривод заставляет перо двигаться с постоянной скоростью по электротермической бумаге. В момент прохождения пером нулевого деления шкалы посылочные контакты срабатывают и подключают импульсный генератор к обмотке вибратора-излучателя, который посылает в воду зондирующий импульс. К моменту возвращения эхо-сигнала от подводного объекта перо перемещается вдоль шкалы на некоторое расстояние, прямо пропорциональное глубине (дистанции). Усиленный электрический сигнал прожигает бумагу, регистрируя отметку глубины. Принцип фиксации нулевой отметки и гашения в самописце такой же, как и в электромеханическом указателе глубин.

Рис. 3.27. Работа эхолота с самописцем

Шкалы индикаторов рассчитывают на определенные глубины и дистанции. Масштаб шкалы определяется пределами значений измеряемых величин, а также шириной бумажной ленты самописца. В индикаторах обычно предусматривается несколько диапазонов, измерение на которых начинается с нуля, и поддиапазон, на котором «просматривается» слой воды с определенной глубины.

Цифровой указатель глубин (ЦУГ) применяют при электронном методе измерения промежутка времени между посылкой и приемом сигнала. ЦУГ состоит из преобразователя типа «время – цифра» (ПВЦ) и цифрового табло.

Преобразователь «время – цифра» преобразует промежуток времени в прямо пропорциональное число импульсов, соответствующее глубине. Структурная схема ЦУГ приведена на рис. 3.27. Генератор счетных импульсов ГСИ вырабатывает счетные импульсы с частотой повторения fп = 7500 Гц, которые поступают на вход схемы совпадения СС. Период следования, а значит, и цена одного счетного импульса соответствуют глубине

В момент излучения блок посылок БП вырабатывает импульс посылки, который поступает к задающему генератору ЗГ и триггеру управления ТУ. Последний сбрасывает счетные декады СД с цифрового табло в нулевое положение. Одновременно триггер управления выдает на схему совпадения разрешающий сигнал, и с этого момента счетные импульсы начинают поступать на счетную декаду десятых долей (0,1).

Рис. 3.28. Работа эхолота с цифровым указателем глубин

Задающий генератор вырабатывает мощный импульс, а вибратор-излучатель осуществляет посылку. Счетные декады подсчитывают счетные импульсы до тех пор, пока отраженный ото дна эхо-сигнал не попадет на вибратор-приемник и после усиления не поступит в триггер управления. Последний снимает разрешающий сигнал со схемы совпадения, и счет импульсов прекращается.

Одновременно импульс триггера управления включает цифровое табло, и подсчитанный счетными декадами результат подается через дешифратор на цифровое табло ЦТ.

3.2.3 Лаги

Лаги предназначены для измерения скорости судна относительно поверхности воды.

В зависимости от принципа действия, лаги делятся на три вида: гидроакустические, индукционные и гидродинамические.

На рис. 3.28 изображен гидродинамический лаг.

Рис. 3.29. Гидродинамический лаг:

1 – основной блок; 2 – стрелочный указатель скорости; 3 – соединительный кабель; 4 – штепсельный разъем; 5 – цифровой указатель скорости и расстояния; 6 – приемная трубка лага; 7 – приемный клапан; 8 – маховик приемного клапана

Оцените статью
Adblock
detector