Почему поплавки не тонут

Лучшие монтажи, при которых поплавок видно всегда и течение его не уносит

Настоящего заядлого рыболова никогда не остановит даже плохая погода. Если есть возможность, то он всегда поедет на рыбалку. Самая значимая проблема на поплавочной рыбалке — это ветер. Бывает настолько сильный ветер, что поплавок кидает со стороны в сторону и заметить поклёвку очень трудно.

Так вот, сейчас я покажу вам свои монтажи для поплавочной удочки при ветреной погоде на течении и при стоячей воде. При таком монтаже у вас не будет мотылять поплавок, его не будет прибивать к камышу и не сдует с прикормленного места.

Для стоячей воды в ветряную погоду монтаж делается следующим образом:

Первым делом фиксируем поплавок на основной леске

Одеваем стопорок, далее продеваем поплавок на карабине с вертлюжком и фиксируем его еще одним стопорком. Такой способ фиксации нам даёт возможность, всегда заменить поплавок без деформации монтажа.

Теперь фиксируем основной груз

Основной груз нужен для того, что бы наш поплавок не мотылялся на ветру и его никуда не стаскивало. Вес всех грузиков должен быть такой, что бы поплавок не тонул.

После этого фиксируем еще одну дробинку

Дробинка должна находиться в 10-15 см от крючка. В таком случае наш крючок так же не будет мотыляться в толще воды (особенно если крючок маленький).

Осталось привязать крючок

После этого привязываем крючок на край лески. Размер крючка выбирайте в зависимости того, какую рыбу вы собрались ловить. Я пользуюсь крючками Owner.

Для наглядности я выбрал комплектующие больших размеров. Расстояние основных грузиков до поплавка нужно выбирать от минимальной глубины вашего водоёма.

Для течения в ветряную погоду монтаж делается немного иначе:

Поплавок нужно использовать чуть тяжелее

Оптимальный размер поплавка при сильном ветре и течении в районе 4 грамм.

Леску нужно выбирать диаметром 0.2 мм или 0.16 флюрокарбон

Если ветер очень сильный советую всем использовать флюрокарбон. Флюрокарбон тяжелее чем монофильная леска и при забросе он не будет превращаться в дугу и парусить.

2 дополнительные дробинки

В отличие от прошлого монтажа при сильном течении нужно использовать не одну, а две дополнительные дробинки.

Поводок

Осталось привязать поводок диаметров 0.1 мм и длиной 3-4 см. Крючок так же зависит от рыбы, которую вы собрались ловить. Я использую крючки №16.

Расстояние грузиков от поплавка вы выбираете от минимальной глубины водоёма.

Чтобы вам было более понятно как выглядит монтаж, я сделал для вас схему.

Автор: Рыбалка XXI века. Яндекс Дзен

Поплавки для рыбалки. Физика и геометрия.

Вокруг да около в сети о поплавках написано много, но для начинающего рыболова, собирающегося купить пару-тройку поплавков к своему первому удилищу, убедительной информации для размышления очень мало. Даже в фирменном магазине рыболовных товаров далеко не всякий продавец-консультант способен дать толковые рекомендации. В этой заметке сделана попытка коротко рассмотреть основные характеристики поплавков, на которые следует обращать внимание при осознанном выборе. А так как поплавки для «маха» являются базовыми, то анализируются, в основном, эти поплавки. При желании их свойства легко могут быть аппроксимированы на поплавки для других видов поплавочной рыбалки, ибо законы физики универсальны.

1. Конструкция поплавка.

В общем случае поплавок конструктивно состоит из антенны, тела, киля и крепежных элементов в виде колец и кембриков (рис. 1).

Тело поплавка предназначено для удержания оснастки во взвешенном состоянии. Антенна является индикатором поклевки. Киль придает поплавку дополнительную остойчивость. Крепежные элементы предназначены для крепления поплавка к леске.

2. Грузоподъемность поплавка.

Чем больше масса огрузки, тем больше ее инерционность и тем большую силу надо приложить при поклевке «на утоп» в первоначальный момент, чтобы сдвинуть огрузку с места. А так как масса огрузки определяется грузоподъемностью поплавка, то, в общем случае, чем меньше грузоподъемность, тем оснастка чувствительнее. Очевидный вывод: грузоподъемность поплавка должна быть минимально возможной в предлагаемых условиях. Так, грузоподъемность промышленных поплавков может быть от 0,1г и выше. Но на любительской рыбалке вряд ли целесообразно применять поплавки грузоподъемностью менее 0,5г.

Увеличение грузоподъемности может быть вызвано увеличением дистанции лова (чем тяжелее оснастка, тем легче ее забросить на максимальную дистанцию); увеличением глубины точки лова (чем тяжелее огрузка, тем быстрее она погружается и занимает рабочее положение); силой и направлением ветра и силой течения. То есть, количество факторов достаточно велико, чтобы давать конкретные рекомендации на все случаи жизни.

В простых условиях (штиль, стоячая вода) в качестве ориентира можно предложить следующий алгоритм: для махового удилища. Для удилища длиной 3м грузоподъемность поплавка 0,5г для нормального заброса в самый раз. А далее с увеличением дистанции лова плюс, примерно, 0,5г на каждый дополнительный метр длины удилища.

Если же говорить о зависимости грузоподъемности от глубины точки лова, то на стоячей воде это 0,5г, примерно, на 1,5-2м глубины. То есть, при ловле с лодки, скажем, 3-хметровым удилищем на глубине 3м оптимальная грузоподъемность поплавка может быть около 1г.

При ловле «болонкой» или «матчем» многое зависит от конструкции поплавка (о чем будет говориться ниже), а так же от характеристик удилища, катушки, лески, да и от самого рыболова не в последнюю очередь. В простых условиях ориентиры могут быть такие: для заброса на дистанцию 7-8м грузоподъемность поплавка 2-3г, до 10м – 3-4г, до 15м – 5-6г, до 20м – 7-8г, до 25м – 10-12г.

3. Тело поплавка.

Кроме инерционного сопротивления существенная часть силы поклевки «на утоп» приходится на преодоление гидродинамического сопротивления поплавка, которое зависит, в основном, от объема и формы его тела. Если говорить об объеме, то, при прочих равных условиях, чем он меньше, тем меньше гидродинамическое сопротивление. Поэтому есть смысл обратить внимание на материал, из которого изготовлено тело. Чем меньше плотность материала, тем меньше объем тела при одинаковой грузоподъемности.

В промышленном производстве поплавков из природных материалов, оптимально совмещающих малую плотность с высокой прочностью, наиболее распространенным является бальза (средняя плотность около 0,15 г/куб. см). Технологически правильно высушенная бальза очень прочна. Но при повреждении лакокрасочного покрытия она, как и всякое дерево, «пьет» воду, после чего огруженный поплавок может самопроизвольно тонуть.

Из искусственных материалов чаще применяется пенопласт (плотность до 0,05 г/куб. см). Можно посчитать, что при одинаковой грузоподъемности объем тела поплавка из пенопласта будет, примерно, на 10% меньше, чем объем тела из бальзы. То есть, при прочих равных условиях поплавки из пенопласта имеют меньшее гидродинамическое сопротивление. Кроме того, пенопласт воду практически не «пьет», так как имеет ячеистую структуру (как задраенные отсеки в подводной лодке), зато его прочность значительно ниже.

Так же встречаются поплавки с полым телом, оболочка которого выполнена из твердого пластика. Здесь сказать что-либо конкретное об удельной плотности тела трудно – многое зависит от толщины оболочки и формы тела. Чем ближе форма тела к шару, тем меньше удельный вес пластика по отношению к объему тела – то есть, удельная плотность. И наоборот.

Не меньшее, если не большее, влияние на чувствительность поплавка оказывает форма тела. На рис. 2 фиолетовым цветом изображены поплавки, предположим, с одинаковыми массогабаритными характеристиками, отличающиеся друг от друга только формой тела. Для равных условий так же предположим, что все они огружены до антенны.

Известно, что пи одинаковых массогабаритных характеристиках наилучшей гидродинамикой обладает тело «капля». Именно поэтому такую форму или близкую к ней, а не какую-либо иную, имеют, например, форштевни судов, а так же корпуса подводных лодок и поперечные сечения их рулей.

В нашем случае это означает, что поплавок с телом «капля» легче утопить, чем, скажем, поплавок с телом «обратная капля». То есть, левый поплавок на рисунке менее чувствителен при поклевке «на утоп», чем правый. С другой стороны, чем легче утопить поплавок, тем меньше его устойчивость. (Под «устойчивостью» или «плавучестью» понимается способность поплавка противостоять погружению под воздействием внешних вертикальных сил). Это означает, что при определенных условиях (например, на волне определенной высоты) поплавок с телом «капля» может самопроизвольно тонуть. В то время как поплавок с телом «обратная капля» будет на эту волну спокойно взбираться.

Читайте также:  Резина для рыбалки для поводков

Внешние горизонтальные силы (например, ветровое поверхностное течение – синяя стрелка на рисунке) отклоняют поплавок от вертикальной оси тем сильнее, чем ближе к поверхности водоема точка приложения этих сил, что затрудняет регистрацию поклевки. С некоторыми допущениями точкой приложения горизонтальных сил можно считать центр объема тела поплавка (не путать с центром тяжести). Центры объема на рисунке показаны светло-сиреневыми кругами.

Так как центр объема тела «обратная капля» расположен значительно выше (чем тела «капля&raquo, то амплитуда его отклонения от вертикали будет значительно больше. То есть, левый поплавок менее остойчив, а правый – более. (Под «остойчивостью» понимается способность поплавка сохранять вертикальное положение под воздействием внешних горизонтальных сил).

Если уменьшить длину тел этих поплавков, скажем, вдвое, не меняя их объема (то есть, грузоподъемности), то оба тела как бы «раздуются» (показано желтым цветом). При этом центры объемов поднимутся выше к поверхности водоема (желтые кольца). Следовательно, остойчивость обоих поплавков ухудшится, а устойчивость, само собой, увеличится. Последнее равносильно ухудшению чувствительности при поклевке «на утоп».

При этом у «обратной капли» окрашенная желтым цветом площадь существенно меньше, чем у «капли» а центр объема поднялся на существенно меньшую величину. Это говорит о том, что характеристики поплавка с телом «обратная капля» гораздо менее зависимы от длины тела, чем характеристики поплавка с телом «капля» (зависимость кубическая, так как речь идет об объеме).

Если оба эти поплавка несколько недогрузить (рис. 3), их устойчивость увеличится за счет поверхностного натяжения воды. При этом (если недогруз поплавков одинаков) над водой поднимутся одинаковые по объему (V), но разные по высоте (Н) части тел. В этом случае линия соприкосновения с поверхностью воды у поплавка с телом «обратная капля» будет существенно больше (зависимость квадратичная), чем у поплавка с телом «капля». Следовательно, и так достаточно высокая устойчивость левого поплавка увеличится еще больше относительно правого за счет сил поверхностного натяжения.

Это можно интерпретировать и как результат поклевки «на подъем». Поплавок с телом «капля» поднимется выше, чем с телом «обратная капля». С одной стороны, это делает поклевку «на подъем» более заметной, что особенно важно на дальних дистанциях; с другой стороны, это позволяет подпасок делать более легким. То есть, поплавок с телом «капля» более чувствителен не только при поклевке «на утоп», но и при поклевке «на подъем».

Нечто среднее между этими двумя типами поплавков – поплавки с телом «веретено» и «оливка». По сути, эти названия обозначают одну и ту же форму. Просто «веретено» более вытянуто и по характеристикам ближе к «капле», а «оливка» – менее вытянута и по характеристикам ближе к «обратной капле». С этой точки зрения поплавок с телом «игла» — это вытянутое до упора «веретено», а поплавок с телом «шар» — сжатая до упора «оливка». Поэтому, чтобы в дальнейшем по каждому поводу не перечислять формы тел поплавков, условно разделим их на две группы – поплавки с повышенной чувствительностью («капля», «веретено» и производные от них) и поплавки с повышенной устойчивостью («обратная капля», «оливка» и производные от них).

Из сказанного можно сделать важные выводы:

1.Чем длиннее тело поплавка при прочих равных условиях (грузоподъемность, объем и форма тела), тем поплавок остойчивее и чувствительнее. И наоборот. В большей степени это касается поплавков с повышенной чувствительностью и в меньшей – с повышенной остойчивостью.

2. Большая зависимость характеристик поплавков с повышенной чувствительностью от длины тела позволяет применять эти поплавки в широком диапазоне условий – от стоячей воды и штиля до весьма заметного течения и волнения. Чем короче тело, при одинаковой грузоподъемности, тем в более сложных условиях может применяться поплавок.

Чтобы максимально реализовать главный козырь этих поплавков – высокую чувствительность – они огружаются, как правило, до основания антенны. А для обеспечения высокой чувствительности поклевки «на подъем» — иногда и выше основания.

3. Поплавки с повышенной устойчивостью целесообразно применять, в основном, тогда, когда по условиям ловли применение поплавков с повышенной чувствительностью практически невозможно. То есть, при достаточно сильном волнении и достаточно сильном течении.

Чтобы максимально использовать главный козырь этих поплавков устойчивость – огружаются они, как правило, до ватерлинии* или (если ватерлиния отсутствует) до кольца крепления на теле.

*Примечание. «Ватерлиния» – линия на теле поплавка для облегчения его огрузки. Иногда наносится на тело поплавков с повышенной устойчивостью. Как правило, находится возле кольца крепления или недалеко от него. Часть тела поплавка, находящаяся над ватерлинией (или над поверхностью воды) называется «макушкой».

4. Поплавки с коротким телом «обратная капля», а тем более, с телом «шар» из-за крайне низкой чувствительности применяются в поистине экстремальных условиях.

4. Антенна поплавка

В соответствии с законом Архимеда на тело, погруженное в жидкость, действует выталкивающая сила пропорциональная объему этого тела. То есть, чем меньше объем антенны на единицу ее длины, тем меньшее усилие надо приложить для ее (антенны) погружения на одну и ту же глубину. В общем случае это означает, что чем тоньше антенна, тем амплитуда поклевки больше, а, следовательно, при прочих равных условиях, поплавок чувствительнее. В некоторых случаях диаметр антенны может составлять десятые доли миллиметра. (Для большей прочности, такие антенны иногда исполняются из проволоки).

Но, чем тоньше антенна поплавка, тем ее хуже видно вообще и применительно к конкретным условиям в частности. Поэтому, чтобы не увеличивать диаметр антенны, приходится применять всяческие ухищрения. Так, например, на темной воде (на фоне отраженных кустов, грозовых облаков или в пасмурный день), лучше видны светлые антенны (как правило, желтого цвета), а на светлой воде – темные (как правило, красного цвета). Поэтому поплавки иногда исполняются парами (фото 1, внизу).

Более-менее универсальным решением являются многоцветные антенны (фото 1, вверху). Или сменные антенны разных цветов и диаметров. Так же имеются водостойкие маркеры для окраски антенн непосредственно на берегу (чем смывать такой маркер указывается на его этикетке). В этом смысле светлая антенна несколько предпочтительнее – ее легче окрасить в темный цвет, чем темную антенну окрасить в светлый.

Так же встречаются поплавки с антеннами в виде открытых с торцов трубок, в которые легко проникает вода. Такая конструкция позволяет совместить большой видимый диаметр антенны с малым объемом материала, из которого она изготовлена.

Тем не менее, в некоторых случаях, чтобы исключить самопроизвольное погружение поплавка (например, при ловле на тяжелые насадки, точный вес которых трудно учесть во время огрузки), диаметр антенны может быть искусственно несколько завышен сверх того, что необходимо для хорошей наблюдаемости. Тем самым создается некоторый запас грузоподъемности поплавка за счет объема антенны. В этом случае антенны вообще может не быть, а сигнализатором поклевки служит верхняя часть тела поплавка (фото 2).

Так как поплавки большой грузоподъемности предназначены, в основном для больших дистанций, то с увеличением грузоподъемности поплавков диаметры их антенн в общем случае так же увеличиваются. А так как поплавки с повышенной устойчивостью предназначены для сложных условий, которые затрудняют наблюдение за антенной, то диаметр их антенн в общем случае может быть несколько больше, чем у поплавков с повышенной чувствительностью такой же грузоподъемности.

5 Киль поплавка.

Чем длиннее киль, тем поплавок остойчивее. Выше говорилось, что в общем случае, чем длиннее тело поплавка, тем лучше его остойчивость. Очевидно, что в этом случае киль может быть короче, вплоть до чисто символического его наличия уже не столько как элемента остойчивости, сколько как элемента крепления поплавка к оснастке (фото 2). И даже вплоть до полного его (киля) отсутствия (например, поплавок «гусиное перо&raquo.

6. Крепежные элементы.

Возможны несколько вариантов крепления поплавка:

1. На теле (или антенне) установлено специальное кольцо, а на киле (в зависимости от его длины) устанавливаются 2-3 кембрика подходящего диаметра (рис. 1). Если кольцо отсутствует, тогда на антенне устанавливается кембрик. Кольцо может быть установлено на конце киля (или, если киль отсутствует, в нижней части тела), тогда в верхней части тела (или на антенне) устанавливается кембрик.

Оснастка, смонтированная на базе такого достаточно жестко закрепленного поплавка («глухая» оснастка), максимально управляема. Ее можно перемещать вправо-влево, подтягивать ближе, придерживать на течении – контроль за поплавком не теряется, а приманка остается практически на той же глубине.

2. На теле и киле установлены кольца на высоких ножках (фото 3). Такой поплавок может свободно перемещаться по леске («скользящая» оснастка). Для фиксации нужной глубины его перемещение сверху ограничивается силиконовым стопором на леске. Такое крепление поплавка существенно облегчает точный заброс оснастки в ветреную погоду. И кроме того позволяет ловить удилищем с катушкой на глубинах превышающих длину удилища.

Читайте также:  Салмо диамонд фидер 150

Недостаток оснастки, смонтированной на базе такого поплавка, в том, что при управлении ею теряется контроль за поплавком (не видно поклевки в этот момент), а наживка уходит вверх с заданной глубины.

3. Поплавок крепится к леске с помощью кольца расположенного на киле (фото 2) или (если киль отсутствует) в нижней части тела. В этом случае оснастка может быть как «скользящей» (силиконовый стопор на леске ограничивает перемещение поплавка сверху), так и «глухой» (стопоры на леске сверху и снизу поплавка жестко фиксируют его положение).

О «скользящей» оснастке уже сказано. Можно только добавить, что при управлении оснасткой такой поплавок, кроме прочего, еще и самопроизвольно тонет. Для лучшего скольжения он может крепиться к леске с помощью специальной застежки. «Глухая» оснастка применяется при ловле в непосредственной близости от зарослей травы или в «окнах» среди зарослей. При подсечке поплавок моментально опрокидываются килем вверх, потому ни при подсечке, ни при вываживании он за траву не цепляется.

7. Некоторые особенности поплавков для штекера.

Поплавки для штекера внешне ничем не отличаются от поплавков для маха. Но так как они в точку лова не забрасываются, а, образно говоря, «завозятся», то их грузоподъемность определяется только глубиной точки лова. А так как дистанция лова большая, то диаметры антенн поплавков для штекера в общем случае могут быть больше диаметров антенн поплавков для маха при одинаковой грузоподъемности.

При ловле на течении поплавок наклоняется антенной в сторону удилища, что затрудняет регистрацию поклевки (рис. 4А). В этом случае могут применяться поплавки с металлическим килем (фото 4). Их недостаток в том, что ими нельзя измерить глубину в точке лова – в любых условиях они стоят как «ванька-встанька».

Кроме того, на течении могут применяться (и применяются) так называемые «плоские» поплавки. Такой поплавок вместо традиционного кольца на теле для крепления лески имеет отвод. При этом и отвод, и киль расположены под углом к оси антенны (фото 5).

При правильно подобранной грузоподъемности антенна такого поплавка практически не реагирует на течение (рис. 4Б) потому что, с одной стороны, леска тянет за отвод (к которому крепится с помощью кембрика) и тем самым не «опрокидывает» антенну, а наоборот фиксирует ее в вертикальном положении. С другой стороны, смещенный киль нивелирует влияние течения на огрузку.

В некоторых случаях (например, при ловле с мостков) эти поплавки могут применяться и с маховой снастью.

8. Некоторые особенности поплавков для ловли в проводку.

По большому счету, для ловли в проводку годится любой поплавок, если его устойчивость достаточна, чтобы самопроизвольно не тонуть на течении, а диаметр антенны позволяет за ней наблюдать на нужной дистанции. Специализированные поплавки для ловли в проводку на сильном течении – это поплавки с повышенной устойчивостью и увеличенным диаметром антенны.

Большой диаметр антенны позволяет сделать ее короче без ущерба для наблюдаемости. При этом поклевки будут заметнее (фото 6).

Общим недостатком классических поплавков для ловли в проводку является то, что под действием внешних сил (волны, поверхностное течение, трение на кольцах удилища и др.), а, главное, во время придержки их может стаскивать к берегу (рис. 5). Поэтому все большее распространение получают поплавки внешне похожие на «плоские» поплавки для течения из арсенала штекерной ловли, о которых говорилось выше.

Существенное различие между ними в том, что тело такого поплавка в горизонтальном сечении имеет не «плоскую», а вогнуто-выпуклую форму. В результате такого конструктивного решения результирующая сила давления течения на поплавок отталкивает его от берега.

В зависимости от направления течения относительно берега, такой поплавок может быть либо левосторонним, либо правосторонним, что определяется положением отвода на теле относительно антенны. Поэтому конструкция такого поплавка предусматривает возможность установки отвода по желанию – справа или слева от антенны.

9. Некоторые особенности поплавков для матча.

Для матча годится любой поплавок, оснастку с которым можно забросить на нужную дистанцию. Но на дистанциях свыше, примерно, 10м потребуются оснастка с хорошими аэродинамическими характеристиками и, первую очередь, это касается поплавков (рис.6).

Это поплавки с одной точкой крепления на киле, а следовательно, оснастки на их базе неуправляемые. Для повышения аэродинамики поплавка большая часть огрузки, как правило, сосредоточивается в его киле (фото 8). По сути, это стрела с металлическим наконечником.

Хорошая аэродинамика одновременно означает и хорошую гидродинамику. Со всеми присущими ей преимуществами и недостатками, о которых говорилось выше. Поэтому эти поплавки могут применяться в относительно простых условиях.

Еще раз прочел введение (предисловие). Пошел искать статьи про поплавок на сайте (в надежде найти статью Egora, которую я как-то нашел в инете). По ключевому слову нашел всего три статьи, одна из них Стенсена
http://salapin.ru/articles/article470.html
По-моему, это отличный развернутый ответ на цели, поставленные в предисловии статьи Федорова

ЗЫ Старнак, если ссылка на стороннюю статью не корректна, сотри мой пост.

Не-е. Предложение Nicky не годится потому, что в предисловии сказано: «Вокруг да около о поплавках написано много, но для начинающего рыболова УБЕДИТЕЛЬНОЙ информации очень мало». Что и наблюдается в статье «Поплавок как он есть».

Например, «поплавки с каплевидной формой тела предназначены для ловли в проводку махом, штекером и болонской удочкой, могут так же применяться для ловли и в стоячей воде … это лучшая форма для ловли в проводку с придержкой». Почему?

«Поплавки игловидной формы подходят для ловли на стоячей воде и являются лучшими поплавками по показу поклевки благодаря своей форме, но плохо переносят ветер». Почему? «Поплавки с шаровидным телом предназначены для ловли теми же снастями в ветреную погоду. Шаровидная форма лучшая форма для ловли в ветер». Почему?

«Универсальные поплавки всегда хуже специализированных». Универсальные – это какие? Может для читателя это как раз то, что нужно. А то везде пишут, что универсальных поплавков не существует. И так далее по тексту. Одни голословные утверждения, может быть и правильные, но физикой не подкрепленные. Верьте на слово.

Да Вы не обижайтесь. Никто не ставит под сомнение Ваш опыт. Но опыт – это только навык и ничего более. Практик знает, как надо делать, но не всегда может грамотно объяснить, почему так, а не иначе. Оно и понятно, вся современная рыболовная снасть от удилища до крючка – сплошная физика и математика. Вы думаете, поплавки, скажем, «Cralusso» изобрели практики? Ничего подобного. Их изобрели инженеры, для которых рыбалка — хобби. А потом еще сотни раз прокачали их на стенде, чтобы добиться идеальной формы.

Моя заметка, пусть и с кучей недостатков, предлагает начинающим рыбакам подходить к делу творчески, а не слепо копировать чужой опыт. Такой подход значительно сокращает количество ошибок и время на освоение снасти. Ведь не у всякого есть в запасе 50 лет, как у Вас.

Вы еще не получили результаты испытаний, а уже уверены, что они меня опрокинут. Даламбер не опрокинул, не опрокинет и Арчилыч, если испытания будут корректны. А в домашних условиях корректными они быть не могут потому, что чувствительность поплавка определяется не только глубиной его погружения при поклевке, но и скоростью погружения. Поплавок с хорошей гидродинамикой погружается быстрее потому, что оказывает меньшее сопротивление при поклевке. А для замера скорости необходимо специальное оборудование. Вы пытаетесь мне впарить нечто противоречащее тому, чему я сначала пять лет учился, а потом 20 лет профессионально занимался. Еще в СССР. А постоянные командировки дали возможность порыбачить от Зале (Тюрингия) до Амура.

А дискуссии нет потому, что в отличие от базарного спора, она предполагает умение не только слушать, но и слышать. Ни один из «дискутантов» не удосужился внимательно прочесть мою заметку и вникнуть в прочтенное. В результате ваша компания ведет не дискуссию, а спор, аргументами в котором являются СУБЪЕКТИВНЫЙ личный опыт (условие необходимое, но не достаточное), мелкие придирки и агрессивное невежество.
Вот свежие примеры:

1. Вы сравниваете мои поплавки с деревянными самоделками на фото. При этом не желаете видеть, что мои поплавки отличаются от них антенной и длинным килем. Я уж не говорю о том, что эти поплавки от известного производителя. Если ctencen в своей статье о таких поплавках не говорит ни слова, из этого вовсе не следует, что они не достойны внимания. Он, например, не упоминает так же и о «стиках» и «айвонах» и что? Их надо выбросить?

Читайте также:  Перфект джиг или орион

2. Нет, не кажется. Потому, что это так и есть. На пятый день дошло, что устойчивость поплавка обратно пропорциональна его чувствительности, хотя в заметке это сказано прямым текстом. Более того, там сказано, что применение поплавков с повышенной устойчивостью вынужденная мера, на которую приходится идти, чтобы не свертывать удочки, когда применение поплавков с повышенной чувствительностью невозможно по условиям на водоеме.

Да-а. Я уже написал было ответ в духе Вашего комментария, но Ваши извинения заставили меня его переписать.. Приношу и я свои пардоны, если что-то не то ляпнул. После этого даже не стану отвечать «Арчилычу» на его «товарищ не разобрался, с кем имеет дело». А теперь по существу.

1. Еще 150 лет назад Гельмгольц показал, что никакого парадокса Даламбера нет – его математическая модель некорректна и при движении тела в жидкости даже с нулевой вязкостью возникает асимметрия течения. В результате появляется перепад давлений впереди и сзади тела, на который и приходится львиная доля лобового сопротивления. Среди тел с заданным миделевым сечением минимальное лобовое сопротивление имеет «капля», а на втором месте «эллипсоид».
2. По поводу терминологии не хочу даже спорить. Важно понимание физического смысла, а не терминология. А вот здесь, следуя Даламберу, Вы и некоторые другие комментаторы недооцениваете влияние формы тела поплавка на его характеристики. Но это, конечно, дело личное. Хотя, если Вы пороетесь в сети, то можете найти информацию, что коэффициенты обтекаемости тел «капля» и «обратная капля» в зависимости от отношения длины тел к миделевым сечениям могут отличаться в разы. Подчеркиваю – в разы.

Капля на подъем лучше (мой п.1)

А вообще, хотел извиниться перед автором за возможно резкое выражение несогласия. Извините, Валерий, но Арчилыч прав, вы не додумали статью, для начинающих .

Nicky. Прежде чем давать оценку физике, желательно почитать школьный учебник. Там можно найти много интересного и, в частности, ответ на вопрос почему «обратная капля» при поклевке «на утоп» работает хуже, чем «капля». Хотя и в заметке это расписано достаточно подробно и, в отличие от учебника, доступным языком (то есть, без формул).

Что касается статической и динамической чувствительности, то я о них не очень хорошо думаю. То, что «двоечники» называют «статической» чувствительностью поплавка, к поплавку имеет мало отношения. С точки зрения физики здесь речь идет об инерционности оснастки в целом, которая зависит, в основном, от массы огрузки. А то, что называют «динамической» чувствительностью, собственно, и есть чувствительность поплавка как функция объема, формы и длины его тела, а также диаметра его антенны. В заметке это расписано самым подробным образом.

Без обид, так без обид. Чтобы по отдельности не рассматривать каждую из «целой кучи разно векторных сил», их приводят (это математический термин) к двум группам – вертикальные силы и горизонтальные силы. Каждые по отдельности суммируют и рассматривают только два суммарных вектора – вертикальный и горизонтальный.

Все силы, которые топят поплавок (поклевка, водоворот и др.) – вертикальные, ибо действуют на поплавок по вертикали (вниз-вверх). Все силы, которые наклоняют поплавок (ветер, русловые и поверхностные течения и др.) – горизонтальные, ибо действуют на поплавок по горизонтали (вправо-влево). Векторы сил, направление которых меняется в вертикальной плоскости (например, волны), в каждый момент так же можно разложить на вертикальную и горизонтальную составляющие.

Степень противостояния поплавка вертикальным силам в заметке названа «устойчивостью». Но ее можно назвать и «плавучестью», и «непотопляемостью». Хоть «горшком». Важно то, что, чем она выше, тем ниже чувствительность на поклевку. И наоборот. Степень противостояния горизонтальным силам в заметке названа «остойчивостью». Низкая остойчивость затрудняет регистрацию поклевки.

В итоге, в зависимости от условий на берегу, каждый раз приходится искать приемлемый компромисс между устойчивостью, остойчивостью и чувствительностью. Чем и вызвано обилие форм тел поплавков и о чем в заметке в меру сил и способностей рассказано.

Что касается остальных Ваших претензий то, в виду их неконкретности, ответить что-либо вразумительное трудно.

Ну так .начнем с конкретики.
. Кроме того, на течении могут применяться (и применяются) так называемые «плоские» поплавки. Такой поплавок вместо традиционного кольца на теле для крепления лески имеет отвод. При этом и отвод, и киль расположены под углом к оси антенны (фото 5). это ваша формулировка.
А теперь истина.
Очень много моделей плоских поплавков имеют обычное колечко и не имеют отвода.Что на это скажете?
Второе , что из вашей формулировки вынесет начинающий рыбак? Ну есть такие поплавки и чего?

Далее.
. При ловле на течении поплавок наклоняется антенной в сторону удилища, что затрудняет регистрацию поклевки (рис. 4А). В этом случае могут применяться поплавки с металлическим килем (фото 4). Их недостаток в том, что ими нельзя измерить глубину в точке лова – в любых условиях они стоят как «ванька-встанька».
. Ну братец,это просто ПЕРЛ. ,ни в какие ворота не лезет
Когда поплавок наклоняется-это говорит только об одном,что его придерживают и он плывет медленнее скорости потока и это никак не мешает ему регистрировать поклевку. Если у вас поплавок ПРАВИЛЬНОЙ формы,ПРавильно подобран под условия ловли и ПРАВИЛЬНО О огружен. Что на это скажете.
Теперь к поплавкам с металлическими килями.Металлические кили придуманы,наверное не спроста и наверное не для того, чтобы ими нельзя было измерить глубину? Металлические кили придуманы были для того , чтобы на леске было меньше груза, а общая грузоподъемность поплавка оставалась заявленной. А для чего это нужно, там много моментов.
Если вы не умеете промерять глубину,то для этого есть много разных материалов как печатного так и видео назначения, в которых наглядно рассказано и показано ,как это делается разными снастями.
. При правильно подобранной грузоподъемности антенна такого поплавка практически не реагирует на течение (рис. 4Б) потому что, с одной стороны, леска тянет за отвод (к которому крепится с помощью кембрика) и тем самым не «опрокидывает» антенну, а наоборот фиксирует ее в вертикальном положении. С другой стороны, смещенный киль нивелирует влияние течения на огрузку.
Начнем по порядку. Грузоподъемность и противостояние потоку это как говорят в Одессе, немного разные вещи. Поверьте мне как боль. шо. му практику,очень часто при ловле в прооводку штекером поплавок пляшет как угорелый и зависит это только от торбулентности потока, а не от огрузки и формы поплавка и антенны.
То что антенна стоит вертикально означает только одно-все силы пришли в баланс, но надо еще учитывать, чтобы это случилось , есть этой конструкции ПЕРЕМЕННАЯ сила-называется руки рыболова, которые прилагая РАЗНОЕ( исходя из сложившихся обстоятельств) усилие приводят эту конструкцию в баланс и прободят по потоку прилагая РАЗНОЕ усилие компенсирую усилия торбулентности. Теперь стало ясно? И теперь задумайтесь, куда вы завели начинающего рыболова своими познаниями?

По порядку.
1. «Очень много моделей плоских поплавков имеют обычное колечко и не имеют отвода. Что на это скажете?»
Скажу, что я не ставил задачу ОПИСАНИЯ всех имеющихся конструкций поплавков. Это невозможно сделать в короткой заметке. А только преследовал цель, цитирую из заметки: «рассмотреть ОСНОВНЫЕ ХАРАКТЕРИСТИКИ поплавков, на которые следует обращать внимание». Если Вы считаете, что я что-то упустил, для этого и существуют комментарии, где автора можно дополнить.
2. «Когда поплавок наклоняется – это говорит только об одном, что его придерживают и он плывет медленнее скорости потока». Как говорится, «смотрю в книгу – вижу фигу». В штекерной ловле на течении поплавок никуда не плывет, а стоит в одной и той же точке (как правило, не далее метра от кончика удилища) на натянутой леске. Потому течение его и наклоняет. Чтобы уменьшить этот наклон часть огрузки иногда размещают непосредственно возле киля или ставят поплавок с металлическим килем.
3. «Поверьте мне как боль. шо. му практику, очень часто при ловле в проводку штекером…» и далее по тексту. Здрасьте Вам! Ловля в проводку (или по-новомодному – болонская) – это ловля со свободным проплывом поплавка. Штекерной снастью ловить в проводку невозможно – удилище не оборудовано катушкодержателем и пропускными кольцами.

Честно скажу – Вы меня порадовали. Давно я так весело не смеялся. Спасибо. Но, выражаясь Вашими же словами, «задумайтесь, куда вы завели начинающего рыболова своими познаниями?»

90%, а то и больше ловли штекером даже с плоскими поплавками — это ловля впроводку. Да, проводка медленная, может быть с остановками, но впроводку.

Ну и основной прием ловли на болонку это также ловля с придержкой. Уловы по сравнению со свободным проплывом различаются на порядок.

Оцените статью
Adblock
detector