Устройства автоматики фидеров контактной сети переменного тока
Контактная сеть на участках, электрифицированных на переменном токе, получает питание от шин напряжением 27,5 кВ тяговой подстанции по фидерам (рис. 4.1, а). Выключатель фидера Q служит для включения и отключения фидера. Шинный QSUJ и линейный QSл, разъединители с дистанционным управлением обеспечивают снятие напряжения с выключателя фидера при работе на нем, а обходной разъединитель QS0 с дистанционным управлением обеспечивает питание контактной сети по фидеру от запасной шины ЗШ при отключенном выключателе Q.
К трансформатору тока ТА подключен амперметр РА, токовое реле КА, комплект электронной защиты фидера AKZ, фиксатор-сумматор токов коротких замыканий ASA и устройство для определения места повреждения контактной сети ASN. Устройства AKZ и ASN подключены также к шинам 100 В трансформатора напряжения.
В схему вторичной коммутации фидера (рис. 4.1, б) входят цепи управления (1—2)— (9—6), защиты (11—8)—(19—14), фиксации команды управления (21—16)—(28—18), автоматики (29—20)—(37—30), пуска телеблокировки (39—32)—(43—38) и сигнализации (45—40)—(49—42).
Оперативное включение выключателя фидера осуществляется путем нажатия кнопки включения SBC, контакты которой замыкают цепь 1—2, или по телеуправлению при замыкании цепи 3—2 контактом реле включения КСС. При этом получает питание контактор КМ, который своими контактами замыкает цепь питания катушки включения выключателя YAC от шин включения EY. Выключатель включается и своим контактом Q размыкает цепи 1—2 и 9—2, обрывая цепь питания катушки КМ и повторителя отключенного положения выключателя KQT. Другим своим контактом Q выключатель замыкает цепь 9—6 катушки повторительного реле включенного положения KQC, которое в свою очередь замыкает цепь 45—40 красной сигнальной лампы HLR, сигнализирующей о включении выключателя. Цепь 47—42 зеленой лампы HLG размыкается контактом реле KQT. Одновременно другим контактом кнопки SBC замыкается цепь 25—18 или контактом реле KQQ цепь 27—18, что приводит к переключению реле фиксации команды KQQ. Его контакты переключаются в цепях 23—16, 25-18, 29-20, 37-26, 47-42 и 49-42.
Автоматическое отключение выключателя фидера происходит при срабатывании электронной защиты AKZ (цепь 19—AKZ—VDI—КН1— ASA— KBS—Q—YAT— 6) или телеблокировки АТВ ( цепь 19—АТВ—’VD2—КН2—ASA—KBS—Q—YAT— 6). Катушка отключения YAT, получив питание, отключает выключатель. При этом срабатывает указательное реле защиты КН1 или телеблокировки КН2, включается в работу фиксатор-сумматор ASA, реле блокировки выключателя KBS на время его отключения размыкает цепь 1—2, запрещая включение контактора КМ и выключателя Q. Если отключение происходит сразу после оперативного включения, то контакт реле KBS замыкает цепь 1—4 или 3—4 питания удерживающей катушки KBS. Реле KBS будет удерживать цепи 1—2 или 3—2 разомкнутыми, запрещая повторное включение выключателя при наличии повреждения в контактной сети.
Отключение включателя приводит к переключению его повторительных реле KQC и KQT: реле KQT возбуждается по цепи 9—2, а реле KQC обесточивается при размыкании цепи 9—6. Реле KQC размыкает цепь 45—40 красной лампы HLR, а реле KQT замыкает цепь 49—42 зеленой лампы HLG (контакт реле KQQ в этой цепи замкнут). Зеленая лампа, получая пульсирующее напряжение от шины мигания (+)ЕР, будет гореть мигающим светом, сигнализируя об аварийном отключении фидера.
Автоматическое повторное включение выключателя осуществляется устройством РПВ-58, срабатывающим при автоматическом отключении выключателя фидера. Контакт реле KQT замыкает цепи 29—20 и 29—22 (контакт реле KQQ замкнут) счетчика PC аварийных отключений и реле КТ устройства РПВ-58. Реле КТ обеспечивает необходимую выдержку АПВ. Контакт реле КТ, шунтирующий резистор 1R1, размыкается и включает его последовательно с катушкой реле КТ для снижения тока и уменьшения нагрева катушки.
Контакт реле КТ с выдержкой времени замыкает цепь разряда конденсатора С на катушку реле KL. Предварительно заряд конденсатора осуществляется по цепи 37—22 после включения выключателя и отключения резистора 1R3 от шины —ЕС контактом реле KQQ (контакт реле KL1 разомкнут при наличии напряжения на шинах 27,5 кВ). Резистор 1R2 ограничивает ток заряда конденсатора, время заряда которого составляет 15—20 с, чем обеспечивается однократность АПВ.
Реле KL, возбудившееся в результате разряда конденсатора С на катушку KL, замыкает своим контактом цепь 37—2(37— KL— KL— КНЗ—KBS—Q—КМ— 2). Контактор КМ, получив питание, включает повторно выключатель Q. Катушка KL в цепи 37—2 служит для удержания реле KL во включенном состоянии до включения выключателя и размыкания цепи 37—2 контактом Q.
Оперативное отключение выключателя фидера контактной сети осуществляется путем замыкания цепи 7—6 кнопкой отключения SBT или цепи 5—6 контактом реле отключения по телеуправлению КСТ. При этом протекает ток по катушке отключения YAT и выключатель отключается. Одновременно создается цепь 23—16 или 21—16 катушки отключения реле фиксации KQQ. Реле KQQ переходит в исходное состояние, фиксируя команду отключения. Его контакты в цепях 23—16, 29—22, 49—42 размыкаются, а в цепях 25—18, 37—26, 47—42 замыкаются.
Размыкание цепи 29—22 предотвращает запуск АПВ, а замыкание цепи 37—26 приводит к разряду конденсатора С на резистор 1R3 по цепи С— 1R3—KQQ—26—22—С. Замыкание цепи 47—42 приводит к подключению зеленой лампы HLG к шине местной сигнализации +ЕС, а размыкание цепи 49—42 приводит к отключению HLG от шин мигания (+)ЕР. Зеленая лампа HLG горит ровным светом, сигнализируя оперативное отключение выключателя.
Блокировка выключателя фидера от повторного включения осуществляется при отключении фидера защитой по напряжению по цепи 11—6, которая замыкается контактом реле KL1 защиты шин 27,5 кВ. Одновременно другой контакт этого реле замыкает цепь разряда конденсатора С устройства РПВ-58 (С— 1R3—KL1—28—22— С). Хотя пуск АПВ по цепи 29—22 произойдет и реле времени КТ замкнет цепь катушки реле KL, повторного включения выключателя Q не произойдет, так как конденсатор С к этому моменту будет разряжен.
Отключение выключателя фидера при срабатывании электронной защиты AKZ или телеблокировки АТВ приводит к запуску устройства резервирования при отказе выключателя (УРОВ) по цепи 19-AKZ—VD3—KQT-УРОВ или 19—АТВ—VD4-KQT— УРОВ. Контакт повторительного реле KQT размыкает цепь запуска УРОВ при отключении выключателя. Если же выключатель фидера не отключится, то УРОВ отключает питание сборных шин 27,5 кВ.
По цепи 19—10 при срабатывании электронной защиты AKZ или телеблокировки АТВ через диоды VD5 или VD6 запускается в работу устройство определения места повреждения контактной сети ASN (ОМП). До отключения выключателя Q оно по значениям тока и напряжения, поступающим на ASN от трансформаторов ТА и TV (рис. 4.1, а) определяет сопротивление до точки повреждения, которое пропорционально расстоянию до этой точки. Результаты измерений передаются энергодиспетчеру по системе телемеханики.
АВТОМАТИКА ФИДЕРОВ КОНТАКТНОЙ СЕТИ
Назначение устройств автоматики контактной сети
Контактная сеть работает в более тяжелых условиях по сравнению с линиями электропередачи, к тому же не имеет резерва. Это требует предъявления к устройствам автоматики фидеров контактной сети дополнительных условий. Как показал опыт эксплуатации электрических железных дорог постоянного и переменного тока, большинство коротких замыканий, возникающих в контактной сети, неустойчиво и, как правило, ликвидируются после снятия напряжения.
Число успешных повторных включений, осуществляемых устройствами АПВ, на отдельных участках достигает 80—90 % %. Чтобы снизитъ до минимума число неуспешных АПВ, используют устройства,
— предварительно испытывающие контактную сеть на наличие или отсутствие в ней короткого замыкания и
— запрещающие или разрешающие повторное включение в зависимости от результатов испытаний.
Для обеспечения минимального перерыва питания поездов желательно иметь минимальную выдержку времени АПВ. В то же время это может отрицательно сказаться на работе фидерных выключателей, в которых идет процесс гашения дуги и деионизация пространства между контактами. Кроме того, при мгновенном АПВ увеличивается вероятность пережога контактного провода при включении на короткое замыкание КЗ, так как температура его в точке КЗ не успевает снизиться в течение короткого бестокового интервала.
Для устройств АПВ двукратного действия, применяемых на фидерах контактной сети постоянного тока, оптимальным интервалом первого АПВ, который определяется конструкцией выключателей и необходимостью отключения двигателей ЭПС машинистом, можно считать 6—10 с, второе АПВ осуществляется через 6 с после первого.
Автоматическое повторное включение предусматривают для следующих выключателей:
— фидеров контактной сети тяговых подстанций постоянного тока — двукратное АПВ с предварительным испытанием на наличие КЗ;
— фидеров контактной сети тяговых подстанций переменного тока, фидеров распределительных пунктов и пунктов группировки переключателей контактной сети станций стыкования, фидеров депо — однократное АПВ;
— пунктов параллельного соединения постоянного и переменного тока — однократное АПВ при наличии напряжения в контактной сети двух путей.
При двустороннем питании контактной сети от смежных тяговых подстанций и больших токах тяговой нагрузки релейная защита может оказаться нечувствительной к токам короткого замыкания в конце защищаемой линии, в результате чего появляются незащищенные («мертвые») зоны. Для ликвидации таких зон в комплексе с релейной защитой и автоматикой используются устройства телеблокировки выключателей контактной сети тяговых подстанций и постов секционирования.
Схема автоматики фидера контактной сети
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Защита фидеров контактной сети переменного тока
Для ЭПС как приемника электроэнергии, питающегося от тяговых подстанций по фидерам контактной сети, характерно перемещение вдоль питающей тяговой сети, изменение величины потребляемого тока при изменении профиля пути и режима работы ЭПС. Схема питания тяговой сети в процессе эксплуатации может меняться: для ремонтных работ отключаются временно секции контактной. сети и посты секционирования; по аварийным условиям двустороннее питание может быть заменено односторонним и т.д. Все это накладывает определенные сложности на настройку и работу релейной защиты. Необходимо обеспечить такие условия работы релейной защиты, чтобы не происходило ложных отключений тяговой сети по ее вине, а все повреждения сети безусловно отключались, отсутствовали «мертвые зоны» защиты при всех изменениях схемы и при этом не требовалась перестройка защиты.
Для исключения пережегов контактного провода важно не только отключить КЗ, но всемерно сократить время отключения f0TUi, так как электрическая дуга с током, превышающим 2000 А, может пережечь контактный провод через 0,15. 0,17 с. Величина тока при КЗ в любой точке контактной сети двухпутного участка, питающегося от двух подстанций, обычно не превышает 3000 А. Время пережега провода марки МФ-100 током 3000 А не превышает 0,15 с. Исходя из этого, на фидерах контактной сети должна устанавливаться быстродействующая защита, которая в совокупности с быстродействующими масляными или вакуумными выключателями обеспечивала бы отключение поврежденного участка за время не более 0,12. 0,14 с.
Таким требованиям удовлетворяет двухступенчатая дистанционная защита, дополненная ускоренной токовой отсечкой и телеблокировкой, выпускаемая в виде модернизированного устройства электронной защиты фидеров (УЭЗФМ). Устройство предназначено для защиты фидеров участков железных дорог, электрифицированных на переменном токе. Оно размещается на тяговых подстанциях и унифицировано для систем 25 кВ и 2 х 25 кВ. Структурная схема такого устройства приведена на рис. 1, а.
а — структурная схема защиты фидера контактной сети переменного тока; б — характеристика срабатывания двухступенчатой дистанционной защиты; в — график времени срабатывания
Первая ступень защиты — ненаправленная дистанционная защита без выдержки времени выполнена на измерительных органах полного сопротивления К Zx и тока КАХ, логическом И-НЕ1. Вторая ступень защиты — направленная дистанционная защита с выдержкой времени 0,5 с выполнена на измерительных органах полного сопротивления KZ2 и фазового Кщ на логических органах И-НЕ2 и времени К Т. Третья защита — токовая отсечка (резервная) выполнена На измерительном органе КАг и логическом И-НЕЗ.
Измерительные органы полного сопротивления К Z, и KZ2 представляют собой схемы сравнения двух переменных величин: напряжения на шинах 27,5 кВ, преобразованного с помощью трансформатора напряжения TV и промежуточного трансформатора TLV в напряжение соизмеримое с параметрами электронных органов; тока фидера контактной сети, преобразованного с помощью трансформатора тока ТА и промежуточного трансформатора TLA в напряжение, необходимое для подачи на электронные органы. Результатом сравнения является сопротивление до точки повреждения контактной сети и, если оно меньше уставки КZx, К Z,, последнее срабатывает.
Токовые реле К Ах и КАг являются пороговыми органами, которые реагируют на величину тока фидера, преобразованного с помощью трансформатора тока ТА и промежуточного трансформатора TLA в напряжение, подводимое к реле. Реле КАХ блокирует KZX при КЗ за пределами защитной первой зоны (на других фидерах «за спиной»). Реле КА2 является измерительным органом резервной токовой отсечки, включающей в себя логический орган И-НЕЗ.
Измерительный фазовый орган Кср осуществляет сравнение фаз напряжения и тока, осуществляет блокировку реле KZ2 при нормальном режиме работы и разрешает работу второй ступени при КЗ, когда фазовый угол между током и напряжением составляет от 45 до 95°. При этом запускается реле времени, создающее выдержку времени защиты 0,5 с.
При срабатывании любой ступени дистанционной защиты или резервной токовой отсечки на выходе схемы И-НЕ1, И-НЕ2 или И-НЕЗ появляется отрицательный потенциал, поступающий на схему ИЛИ отключающего модуля защиты «Откл». При этом срабатывает промежуточное реле К L, замыкающее своим контактом цепь управляющего электрода тиристора VS. От +110 В через стабилитрон VD резисторы R,nRv диод VD, дроссель L L, блок-контакт Q катушку отключения У A Т до -110 В протекает управляющий ток тиристора VS, последний отпирается и через него собирается цепь на катушку отключения У А Т. Выключатель Q фидера контактной сети отключается.
Характеристика двухступенчатой дистанционной защиты (рис. 1, б) является комбинированной. Характеристика первой ступени представляет собой окружность Z, с центром в начале координат комплексной плоскости. Блокирующее реле К А, разрешает работу первой ступени защиты только при КЗ на защищаемой линии, т.е. при угле между током и напряжением в пределах от -90 до +90. Характеристика второй ступени представляет собой сектор окружности радиусом Z2 с центром в начале координат. Фазовый орган второй ступени защиты имеет «мертвую зону» по напряжению вблизи подстанции, однако, для защиты фидеров это значения не имеет, так как вторая ступень имеет выдержку времени, а близкие КЗ обычно отключает первая ступень защиты без выдержки.
Взаимодействие защит удобно анализировать с помощью графика tc3 = f(I), представляющего собой зависимость времени срабатывания tc.3 от расстояния до точки КЗ (рис. 1, в). Для однопутного участка на графике показаны характеристики первой (/), второй (2) ступеней дистанционной защит и резервной (3) токовой отсечки.