Меднение вольфрама для мормышек

Содержание
  1. Как сделать меднение блесен и мормышек в домашних условиях
  2. Приманка из редкого металла – самодельные мормышки из вольфрама
  3. Вольфрам
  4. Плюсы вольфрамовых мормышек
  5. Минусы покупных изделий
  6. Трудности самостоятельного изготовления
  7. Рыболовы учатся обходить трудности
  8. Где достать вольфрам для мормышек?
  9. Уловистая «ведьма» без пайки
  10. Изготовление
  11. Заточка электрода по методу опытных сварщиков
  12. Инструкция по формированию тела мормышки
  13. Цинкование
  14. Сборка схемы
  15. Полезное видео
  16. Меднение вольфрама в домашних условиях. Технология меднения и ее применение в домашних условиях
  17. Технология меднения
  18. Примеры меднения своими руками
  19. Меднение гальваникой и гальванопластика в домашних условиях
  20. Гальванический. Бейкер, покрывающий алюминий.
  21. пекарь
  22. Покрытие баком
  23. Быстрое накопление меди.
  24. Когда делают омеднение и можно ли его использовать для коррозионного покрытия
  25. Гальваническое меднение
  26. Процесс омеднение деталей в домашних условиях (расчет слоя покрытия при определенном токе)
  27. Гальванизация собственными руками дома: технологии и оборудование
  28. Особенности меднения
  29. Способы нанесения
  30. Гальваника в домашних условиях: оборудование и материалы
  31. Меднение стальных изделий
  32. Меднение путем погружения в раствор
  33. Покрытие медью без помещения в электролитный раствор
  34. Меднение алюминия медным купоросом
  35. Гальванопластика в домашних условиях
  36. Меднение стальных изделий
  37. Меднение путем погружения в раствор
  38. Покрытие медью без помещения в электролитный раствор
  39. Меднение алюминия медным купоросом
  40. Гальванопластика в домашних условиях

Как сделать меднение блесен и мормышек в домашних условиях

Иногда на цветную, «медного оттенка» блесну рыба берет намного охотнее, чем на простую свинцовую. Я хочу рассказать как за 5-7 минут из обычной свинцовой блесны, изготовить медную. Точнее не медную блесну, а свинцовую покрыть тонким слоем меди в домашних условиях.

Итак, нам понадобится:

  • свинцовая блесна,
  • 25 г медного купороса,
  • кусочек меди или медного провода,
  • обрезки телефонного провода,
  • батарейка крона,
  • стеклянная емкость,
  • наждачная бумага.

Берем блесну или мормышку и аккуратно зачищаем ее наждачной бумагой. Важно зачистить блесну качественно, чтобы медь потом хорошо держалась.

Прикручиваем к блесне отрезок телефонного провода длиной примерно 30 см . Берем стеклянную емкость, в данном случае беру обычную рюмку. Насыпаем в рюмку 25 г медного купороса и заливаем 50 г теплой воды.

Помешиваем пластиковой или деревянной палочкой до полного растворения купороса. Использовать для помешивания железный предмет категорически нельзя. Медный купорос вы можете приобрести в любом садовом или строительном магазине.

Берем кусочек меди, в данном случае используется стержень от старого негодного паяльника. Если у вас нет кусочка меди, то можно использовать обычный медный электропровод, очищенный от изоляции. Прикручиваем к меди второй отрезок телефонного провода.

Опускаем в приготовленный раствор медного купороса блесну и медь. Подсоединяем проводки к батарейке крона: клеммой плюс – к проводку с медью, клеммой минус к проводку с блесной. Так оставляем блесну и кусочек меди в растворе этого электролита на 2-3 минуты.

Через пару минут вынимаем блесну или мормышку после меднения. Блесна должна покрыться тонким слоем меди и приобрести красный “медный” цвет.

Готовое изделие полируем с помощью кусочка войлока. Придать блеск блесне можно смесью зубной пасты и нашатырного спирта. Приготовленная паста наносится тонким слоем на блесну, предварительно промытой водой с мылом. После ее высыхания протереть сухой тряпочкой.

Таким методом можно покрыть тонким слоем меди любое свинцовое изделие: блесну, мормышку груз…
Желаю вам удачной ловли и рекордных трофеев.

Тильной Андрей — Специально для SAMODELKI FISH , Украина, Харьковская обл

Приманка из редкого металла – самодельные мормышки из вольфрама

Вольфрамовые мормышки ценятся за большой вес при малом объеме. Такой мормышкой можно ловить на любом горизонте воды – и ближе к поверхности, и на большой глубине, и на течении.

Кроме того, мормышки устойчивы к воздействию агрессивных сред, долговечны, не окисляются в воде. Такие положительные качества мормышка имеет благодаря металлу, из которого она сделана – вольфраму.

Вольфрам

Вольфрам – самый тугоплавкий металл высокой плотности: температура плавления – 3422°С, плотность 19,3 г/см3, в 1,7 раз выше свинца (11,3 г/см3).

Плюсы вольфрамовых мормышек

  1. Высокий удельный вес. Тяжелые мормышки обеспечивают привлекательную игру на глубине и на быстром течении.
  2. Устойчивость к агрессивным средам и окислению.
  3. Долговечность.

Что и говорить – весомые плюсы, однако, при покупке в рыболовных магазинах рыболов может задуматься о целесообразности покупки.

Минусы покупных изделий

  1. Фальсификация – использование более легких сплавов вольфрама или использование вместо вольфрама внешне похожего более легкого металла.
  2. Дороговизна – цена качественных изделий из вольфрама на порядок выше, чем свинцовых.

Возникающие проблемы с покупными изделиями провоцируют желание у рыболова изготавливать вольфрамовые мормышки самостоятельно, но уникальные свойства вольфрама – высокая плотность и тугоплавкость, заставляют задуматься о грядущих трудностях.

Трудности самостоятельного изготовления

  • сложность термической и механической обработки;
  • невозможность образования расплава и заливки в формы;
  • невозможность прямого припаивания крючков к телу вольфрамовой мормышки.

Рыболовы учатся обходить трудности

Описаны много способов изготовления вольфрамовых мормышек в домашних условиях с использованием методов гальваники для оцинковки или омеднения тела мормышки с возможностью последующей пайки оловянно – свинцовым припоем.

Существуют и беспроблемные варианты изготовления самых уловистых мормышек без припаивания крючков.

Все же в первую очередь необходимо решить вопрос – где достать вольфрам для самодельных мормышек.

Где достать вольфрам для мормышек?

В чистом виде вольфрам для промышленности мало интересен. Для придания нужных свойств – повышения ковкости, пластичности, снижение тугоплавкости и т.д. титан легируют или спекают порошок вольфрама с добавками. Естественно, при этом плотность вольфрама снижается до 17-18.6 г/см3, а это уже не в 1,7 раз больше плотности свинца, а в 1,5.

Вольфрам в продаже существует в виде проволоки, стержней, фольги, листов, штабиков, но невозможно приобрести его заготовки в количестве, необходимом рыболову для изготовления мормышек – несколько десятков грамм. Продажа осуществляется от одного кг изделия, а это уже тысячи рублей.

Поштучно, в более или менее чистом виде – 97-99%, вольфрам можно приобрести в виде электродов для аргонодуговой сварки по цене от 46 рублей за штуку. Длина электродов см – 50; 75; 150; 175.

Можно сделать вывод, что вольфрамовые электроды – лучший источник вольфрама для мормышек.

Рыболова могут заинтересовать в первую очередь электроды следующих марок:

  1. «WP» – 99 процентный вольфрам. Зеленый цвет.
  2. «WС» -церий. Серый цвет.
  3. «WY» – диоксид итрия. Тёмно-синий цвет.
  4. «WZ» – оксид циркония. Белый цвет.

Электрод марки WP – источник чистого вольфрама. Электроды WY, WC, WZ поступают в продажу с конусной заточкой.

Уловистая «ведьма» без пайки

«Ведьма» – конусная мормышка с несколькими независимо укрепленными крючками в верхней части тела.

  • настольный точильный станок мощностью 800-1000 вт;
  • гравировальная бормашина;
  • шуруповерт;
  • абразивный круг для станка из карбида кремния или электрокорунда мелкой, или средней зернистости любого диаметра толщиной от 20мм;
  • мини круг с алмазным напылением для гравировальной бормашины диаметром 16; 25 мм;
  • небольшие круглогубцы;
  • молоточек;
  • пассатижи.
  • вольфрамовый электрод;
  • железистая упругая проволока 0,2-0,4 мм;
  • рыболовные крючки с длинным цевьем 3 шт;

Изготовление

Параметры заточенных электродов или сами электроды могут не устроить рыболова. В таком случае следует заточить электрод по своему вкусу.

Заточка электрода по методу опытных сварщиков

Существует быстрый метода заточки электродов под любой конус. Следует производить заточку на заточном или точильном станке с абразивным кругом и с использованием шуруповерта.

Электрод в патроне шуруповерта располагают в одной плоскости с абразивным кругом под нужным углом. При вращении абразивного круга и шуруповерта происходит быстрая заточка вольфрамового электрода.

Острие можно тем же способом быстро сточить и закруглить по своему желанию.

Инструкция по формированию тела мормышки

  1. Делается глубокий круговой надрез в месте образования шапочки мормышки острым краем абразивного круга при одновременном вращении круга и электрода, установленного в патроне шуруповерта – таким образом формируется шапочка ведьмы.
  2. Протачивается под шапочкой на цилиндрической части (1-3 мм) мормышки гравировальной бормашиной мини кругом с алмазным напылением (диаметр круга 16 или 25 мм) круговой канал глубиной и шириной 0,4-0,8 мм для крепления проволоки.
  3. Протачивается тем же кругом нижние равноудаленные вертикальные каналы для крючков 3 шт. (углы 120°).
  4. Протачивается тем же кругом два вертикальных оппозитных канала для крепления проволоки через шапочку.
  5. Делаются углубления в местах крепления крючков карбид-вольфрамовым сверлом на величину, необходимую для свободного вращения крючков (сверлить следует с омыванием места сверления молоком).
  6. Отломить тело мормышки от электрода.

  • Зажав мормышку плоскогубцами закруглить шапочку мормышки на станке.
  • Продеть в ушки крючков железистую проволоку диаметром 0,2-0,4 мм.
  • Поместить проволоку с крючками на горизонтальный канал, распределить крючки на места посадки.
  • Компактно скрутить проволоку по месту верхнего вертикального канала.
  • Для образования колечка на шапочке для крепления мормышки к леске можно скрутить проволоку на середине шапочки, или в том же месте несколько раз продеть проволоку через небольшое заводное колечко.
  • Перекинуть проволоку через шапочку на противоположную сторону, продеть в противоположный верхний вертикальный канал, загнуть в противоположном направлении и острым краем молоточка застучать место изгиба.
  • Несколько раз как можно компактнее окрутить конец проволоки вокруг той-же проволоки. Для получения хорошего натяжения проволоки через шапочку следует докрутить плоскогубцами проволоку колечка на шапочке.
  • Несмотря на долгое описание процесса изготовления, мормышка своими руками изготавливается довольно быстро (при достаточном опыте за 30-40 мин), поскольку все операции просты и не отнимают много времени.

    Цинкование

    Изготовление тела мормышки – трудоемкий, длительный, но не сложный процесс. Телу мормышке самоделке механической обработкой можно придать практически любую желаемую форму. Трудности возникают при припаивании крючка к телу.

    Цинкование – более надежный способ обработки вольфрамовой мормышки для пайки крючков к телу мормышки, чем омеднение.

    Для оцинковки методом втирания цинка понадобятся:

    • цинковый анод «+». Цинковый анод можно изготовить из корпуса пальчиковой батарейки;
    • зарядное устройство для некоторых гаджетов 12в, 2 А;
    • щелочной раствор (подойдет жидкость из щелочного аккумулятора). Можно использовать насыщенный раствор пищевой соды или мыльный раствор, но скорость процесса уменьшиться;
    • цинковые белила – источник оксида цинка;
    • пластмассовая емкость с большим количеством мелких дырочек;
    • большой железный гвоздь в оплетке из изоленты в качестве катода «–»;
    • провода электрические медные 0,5 в оплетке;
    • «крокодилы» – специальные зубчатые прищепки – клеммы 2 шт.;

    Сборка схемы

    1. В щелочной раствор поместить цинковые белила. Дать раствору отстоятся 2 часа.
    2. Зачистить концы двух проводов и подсоединить одним концом к крокодилам, другим к зарядному устройству на плюс и на минус.
    3. Минусовым крокодилом зажать цинковый катод «-» – железный гвоздь в оплетке из изоленты.
    4. Плюсовым крокодилом зажать анод «+» – корпус пальчиковой батареи;
    5. Вольфрамовые мормышки поместить в пластмассовую емкость с дырками.
    6. Опустить емкость в банку с щелочным раствором так, чтобы раствор полностью покрыл мормышки.
    7. Включить зарядное устройство.

  • После этого промыть водой и поместить мормышки в емкость с паяльной кислотой.
  • Через минуту вытащить мормышку из емкости и залудить оловянно-свинцовым припоем.
  • Теперь к вольфрамовой мормышке можно припаивать залуженное цевье рыболовного крючка.

    Полезное видео

    Далее посмотрим как делать вольфрамовые мормышки:

    Ассортимент вольфрамовых мормышек в рыболовных магазинах достаточно велик, но они намного дороже свинцовых. Кроме того, за немалые деньги под видом вольфрамовых мормышек можно приобрести изделия из порошкового вольфрама, сплавов вольфрама с другими металлами. Нередко попадаются мормышки из дешевого металла похожего на вольфрам.

    Стоит научиться изготавливать вольфрамовые мормышки самостоятельно. Существует много способов, остается выбрать подходящий, или придумать свой способ.

    Меднение вольфрама в домашних условиях. Технология меднения и ее применение в домашних условиях

    Меднением называется процесс гальванического нанесения меди на различные поверхности. Слой меди обладает сильной адгезией к металлам, сглаживает дефекты покрываемой поверхности, имеет высокую электропроводность и пригоден для дальнейшей обработки. Меднение может использоваться как самостоятельный процесс, так и как часть более сложных (серебрение, никелирование, хромирование). Наряду с промышленным способом практикуется меднение в домашних условиях, позволяющее решить множество бытовых задач. Кроме высоких технических характеристик, данное покрытие прекрасно выглядит, что определяет его использование в различных дизайнерских решениях.

    Технология меднения

    В промышленных условиях меднение происходит в мощных гальванических ваннах, укомплектованных средствами автоматики и другим специальным оборудованием. Однако, этот процесс доступен для выполнения и дома, позволяя обойтись без сложной химической аппаратуры.

    Последовательность технологических операций следующая:

    1. С металлической поверхности удаляется оксидная пленка. Используется наждачная бумага, щетка, полировочные пасты;

    2. Покрываемый предмет обезжиривается раствором соды и тщательно промывается водой;

    3. В стеклянную емкость на медной проволоке погружаются две медные пластины (аноды), между ними подвешивается деталь;

    4. Аноды подключаются к «плюсу» источника постоянного тока, а омедняемая деталь к «минусу»;

    5. В электрическую цепь последовательно включается реостат, регулирующий силу тока, и амперметр. В качестве источника постоянного тока можно применить автомобильный аккумулятор или блок питания;

    6. Электролит наливается в емкость таким образом, чтобы он полностью покрывал поверхность анодов. Выполнять эту операцию следует особенно аккуратно, не допуская попадания едкой жидкости на открытые участки тела!

    7. Плотность тока устанавливается на уровне 2А на дм2 обрабатываемой поверхности, температура электролита: 20–26 градусов, продолжительность обработки: 20-25 минут;

    8. Омедненная деталь извлекается из емкости, процесс закончен. Толщина медного слоя может быть увеличена за счет большего времени пребывания детали в гальванической ванне.

    Состав электролита не сложен: кислота серная – 40 г, сернокислая медь – 190 г, вода – 980 г.

    Несколько советов по меднению:

    • сернокислую медь можно приобрести в магазинах для садоводов и огородников, а серную кислоту и дистиллированную воду — в автомагазинах;
    • в качестве гальванической ванны необходимо использовать емкость из материала, устойчивого к действию агрессивных сред. Можно взять стеклянную банку или небольшую пластмассовую канистру;
    • чтобы слой наносимой меди не получился рыхлым, следует максимально тщательно отполировать подготавливаемую поверхность. Кроме того, рабочий ток должен быть не слишком большим. Потеря времени будет компенсирована качеством получившегося изделия.

    Примеры меднения своими руками

    Иногда требуется заменить вышедшую из строя медную мебельную фурнитуру, а в продаже имеются только никелированные изделия. В этом случае можно легко собрать установку для нанесения меди. Необходимые приборы и материалы: блок питания 12 В / 3 А, серная кислота и медный купорос.

    Сначала необходимо удалить никелировку. Для этого деталь удерживается пинцетом, на который подается «минус» от блока питания. Тряпочкой, закрепленной на

    Читайте также:  Многое другое для рыбалки

    плюсовом электроде, смоченной в 5% серной кислоте, протирается поверхность изделия.

    При снятии никелировки образуются ядовитые пары, от которых необходимо защищать органы дыхания. Желательно использовать специальные очки и респиратор с угольным фильтром. Очищенная поверхность полируется.

    Следующий шаг – сборка простейшей гальванической установки. В банку помещается медный электрод, соединяемый с «плюсом» БП, и обрабатываемая деталь, подключаемая к «минусу».

    Заливается электролит, состоящий из медного купороса, воды и 5% серной кислоты в пропорции 1/5/3 и подается ток. Готовые изделия полируются до приятного блеска.

    Для домашнего меднения существует множество различных применений. Наносить медь можно на алюминиевые столовые приборы, давая им вторую жизнь, на рыболовные блесны, подсвечники и многое другое. Особенно впечатляют работы, в которых декоративное покрытие нанесено на неметаллические предметы: стебли растений, листья, желуди и даже на высушенных насекомых. Природная фактура исходного материала, сочетаясь с красотой гальванического покрытия, создает неповторимый художественный эффект.

    Технология изготовления подобных изделий несколько сложнее, но вполне осуществима дома. В покрываемом материале отсутствует токопроводящий слой, поэтому вместо него используется специальный электропроводный лак, наносимый на поверхность. Рецептура лака включает в себя органические растворители, пленкообразователи и тонкодисперсный графитовый порошок, обеспечивающий электропроводность.

    Лак наносится тонким слоем на сухое растение, высыхает, и через час все готово для меднения. После гальванической обработки можно дополнительно улучшить внешний вид изделия. Существует несколько способов придания гальванической меди различных цветовых оттенков, в том числе с помощью патинирования, химического окрашивания и оксидирования.

    Качество художественных работ, полученных по этим технологиям, находится на уровне настоящих ювелирных украшений.

    Уважаемые читатели, комментируйте статью, задавайте вопросы, подписывайтесь на новые публикации — нам интересно ваше мнение:)

    Медные покрытия, как правило, не применяются в качестве самостоятельного покрытия ни для декоративных целей, ни для защиты стальных деталей от коррозии.

    Это связано с тем, что медь в атмосферных условиях легко окисляется, покрываясь налетом окислов.

    Однако благодаря хорошему сцеплению осажденной меди с различными металлами медное покрытие применяется в многослойных защитно-декоративных покрытиях в качестве промежуточного подслоя, а также для защиты стальных деталей от цементации.

    В гальванопластике медные осадки применяются для изготовления металлических копий, барельефов, волноводов и матриц.

    Электролиты меднения подразделяют на кислые и щелочные . Из кислых электролитов используют сернокислые и борфтористоводородные. Наибольшее применение нашли сернокислые электролиты, отличающиеся простотой состава, устойчивостью и высоким выходом по току (до 100%). Недостатком этих электролитов является невозможность непосредственного покрытия стальных и цинковых деталей вследствие контактного выделения меди, имеющей плохое сцепление с основным металлом.

    Поэтому перед меднением стальных детален в кислых электролитах их предварительно меднят в цианистых электролитах или осаждают тонкий подслой никеля. К недостаткам сернокислых электролитов относятся также их незначительная рассеивающая способность и более грубая: структура осадков по сравнению с другими электролитами.

    К щелочным электролитам меднения относятся цианистые, пирофосфатные и другие электролиты.

    Цианистые медные электролиты обладают высокой рассеивающей способностью, мелкокристаллической структурой осадков, возможностью непосредственного меднения стольных деталей. К недостаткам относятся низкая плотность тока и неустойчивость состава вследствие карбонизации свободного цианида под действием двуокиси углерода воздуха. Кроме того, цианистые электролиты характеризуются пониженным выходом по току (не более 60-70%).

    Кислые электролиты меднения

    Медь сернокислая — 150-250 г/л

    Никель хлористый — 50-70 г/л

    Плотность тока = 1-4 А/дм2

    При перемешивании электролита сжатым воздухом можно довести катодную плотность тока до 6-8 А/дм2.

    Для приготовления сернокислого электролита меднения растворяют медный купорос, фильтруют его в рабочую ванну и при непрерывном помешивании добавляют серную кислоту.

    При нанесении медных покрытий из сернокислого электролита медные аноды растворяются в основном с образованием двухвалентных ионов, которые, разряжаясь на катоде, осаждаются в виде металлической меди.

    Однако наряду с этими процессами происходят п другие, нарушающие нормальное течение электролиза. Возможно также анодное растворение с образованием одновалентных ионов, хотя и в меньшей степени.

    В электролите, омывающем металлическую медь, идет также химический обратимый процесс: Cu + Cu2+ = 2Cu+.

    Накопление в растворе ионов одновалентной меди в больших количествах приводит к сдвигу реакции влево, в результате чего выпадает металлическая губчатая медь.

    В растворе, кроме того, происходит окисление сернокислой одновалентной меди за счет кислорода воздуха н серной кислоты, особенно при воздушном перемешивании: Cu2SO4 + ½O2 + H2SO4 = 2CuSO4 + H2O.

    На катоде процесс заключается в разряде двухвалентных и одновалентных ионов меди, но в связи с тем, что концентрация ионов одновалентной меди приблизительно в 1000 раз меньше концентрации ионов двухвалентной меди, катодный процесс выглядит так: Cu2+ + 2е- = Cu. Выход по току составляет 100%.

    Для получения плотного гладкого осадка в электролите необходимо присутствие серной кислоты.

    Меднение гальваникой и гальванопластика в домашних условиях

    Серная кислота выполняет ряд функций:

    значительно повышает электропроводность электролита;

    понижает активность ионов меди, что способствует образованию мелкозернистых осадков;

    предотвращает гидролиз сернокислой закисной меди, который сопровождается образованием рыхлого осадка закиси меди.

    Дефекты при эксплуатации сернокислого электролита меднения и способы их устранения

    Грубая крупнокристаллическая структура осадков

    Высокая плотность тока

    Снизить плотность тока

    Загрязнение электролита механическими примесями

    Черные и коричневые полосы на покрытии

    Присутствие в электролите примесей тяжелых металлов, мышьяка, сурьмы

    Проработать электролит, при большом содержании примесей электролит заменить

    Пористые, рыхлые осадки

    Наличие в электролите солей железа

    Светлые блестящие полосы на покрытии, осадки хрупкие

    Присутствие в электролите органических примесей

    Отфильтровать электролит, проработать его током

    Борфтористоводородный электролит обладает несколько более высокой рассеивающей способностью, чем сернокислый.

    Кроме того, в борфтористоводородных электролитах можно применять высокие плотности тока. Состав электролита (г/л) и режим меднения:

    Медь борфтористоводородная – 35-40 г/л

    Кислота борная – 15-20 г/л

    Кислота борфтористоводородная – 15-20 г/л

    Никель хлористый – 50-70 г/л

    Плотность тока = до 10 А/дм2

    Электролит перемешивают сжатым воздухом или механической мешалкой.

    Для приготовления борфтористоводородного электролита в борфтористоводородную кислоту небольшими порциями вводят свежеосажденную углекислую медь.

    Раствор углекислой меди готовят подливанием подогретого концентрированного раствора соды к раствору сернокислой меди при перемешивании. Полученный осадок декантируют, промывают и растворяют в борфтористоводородной кислоте. В приготовленный раствор добавляют свободную борфтористоводородную и борную кислоту до требуемого значения рН (1-1,5). В ванну с полученным электролитом доливают воду до рабочего уровня.

    (Деканта́ция, деканти́рование — в химической лабораторной практике и химической технологии механическое отделение твёрдой фазы дисперсной системы (суспензии) от жидкой путём сливания раствора с осадка.)

    Электрохимический процесс — электро-тип, то есть. осаждение более толстого массивного слоя металла на поверхность объекта, форма которого должна быть распространена, скопирована, достаточно распределена. Например, гальванопластика используется в тех случаях, когда металлическая деталь имеет очень сложную форму и ее трудно или невозможно изготовить обычными способами (литье или механическая обработка).

    Таким образом, скульптуры иногда воспроизводятся по образцам (автомобиль «Аполлон» на пьедестале Большого театра выполнен гальванопластикой).

    Этот процесс относительно прост и может быть легко воспроизведен в домашних условиях.

    Печать копируется из статьи или статьи для копирования, то есть из легкого металла, воска, пластика или гипса. Субъект, который нужно скопировать, вымыть с мылом, добавляется к картонной коробке и выливается низкоплавким сплавом из древесины или других сплавов.

    После литья объект удаляют и полученную форму обезжиривают и ударяют путем литья в электролитической ванне.

    Чтобы не откладывать металл по бокам формы, где нет никакого впечатления, они покрываются щеткой с расплавленным воском или парафином. После литья меди низкоплавкий металл растворяется в кипящей воде и получается матрица. Матрица заливается штукатуркой или свинцом, и копия готова. Следующая композиция для воска используется для изготовления пресс-форм:

    Гальванический. Бейкер, покрывающий алюминий.

    час
    Парафин ……… 3 v. час
    Графит ……….. 1 v. час

    Если форма изготовлена ​​из диэлектрика (воск, пластик, парафин, гипс), его поверхность
    покрытый электропроводящим слоем.

    Передаточный слой может быть осажден с извлечением определенных металлов (серебра, меди, никеля) или механическими средствами — путем протирания поверхности графитом в виде листьев из щетки мягких волос.

    Графит тщательно измельчают в фарфоровом растворе, просеивают через сито или марлю и наносят на поверхность продукта мягкой кистью или ватой. Графит лучше держит глину. Формы гипса, дерева, стекла, пластика и папье-маше покрыты раствором воска в бензине. На поверхности, которая не успевает высохнуть, поместите графит в порошок и излишек, без контроля графита.

    Гальваническое покрытие просто отделено от графитовой формы. Если форма выполнена из металла, необходимо создать проводящую фольгу из оксида, сульфида или другой нерастворимой соли, такую ​​как серебро — серебросодержащий хлорид свинца — сульфид свинца, чтобы обеспечить хорошее отделение от покрытия.

    Медь, серебро и свинцовые поверхности обрабатываются 1% раствором сульфида натрия, что приводит к образованию нерастворимых сульфидов.

    Отложение металла на поверхности пресс-формы. Готовая форма погружается в гальваническую ванну, схема которой находится под напряжением, так что снимаемая пленка не растворяется. Во-первых, «уплотнение» (покрытие) проводящего слоя меди осуществляется при низкой плотности тока в растворе этого
    состав:

    Серокислотная медь (сульфат меди) … 150-200 г.
    Серная кислота 7-15 г
    Этиловый спирт 30-50 мл
    Вода …………………………………………. 1000 мл

    Рабочая температура электролита составляет 18-25 ° С, плотность тока составляет 1 — 2 А / дм2.

    Алкоголь необходим для
    увеличить смачиваемость поверхности. Когда вся поверхность «подталкивается» медным слоем, форма переносится на электролит, предназначенный для гальванопластики. При гальванизации (медь) рекомендуется следующая композиция:

    Серийно кислотная медь (сульфат меди) …..

    340 c. час
    Серная кислота 2 v. час
    Вода …………………………………………. .1000 v. час

    Температура электролита составляет 25-28 ° С. Плотность тока составляет 5-8 А / дм2.

    Используя метод электроформовки, вы можете взять металлическое кружево для декоративно-художественного декоративно-художественного оформления различных предметов. Кружево растягивается на раме и пропитано парафином.

    Затем вы протираете их между бумажными листами, чтобы удалить лишний парафин. Затем наносят электропроводящий слой тонкого графита, а избыток тщательно подталкивают кружевом. Путь провода — край кружева, он прикреплен к пластиковой раме или раме толстой проволоки с изолированным винилхлоридом вместе с кружевом, погруженным в электролит.
    Лак, покрытый медью, обрабатывается латунной щеткой. Припаяйте их свинцовым припоем.

    Гальваноспециальная обработка металлических кружев — использование декоративного слоя из серебра или золота или окисления.

    пекарь

    Покрытие баком

    Медные покрытия обычно не используются как самостоятельное покрытие для декоративных целей, а также для защиты стальных деталей от коррозии. Это связано с тем, что медь в атмосферных условиях легко окисляется, покрывается окислением.

    Однако из-за хорошей адгезии осажденной меди к различным металлам медное покрытие используется в многослойных защитных и декоративных покрытиях в качестве промежуточных подошв, а также для защиты стальных деталей от газификации.

    Для электроформования медные нанотрубки используются для изготовления металлических копий, рельефов основания, волноводов и матриц.

    Медные электролиты делятся на кислотные и щелочные.

    Кислотные электролиты используются сульфатными и борфтористоводородными. Наибольшее применение было доступно для сульфатных электролитов, характеризующихся их простым составом, стабильностью и высокой силой тока (до 100%).

    Недостатком этих электролитов является невозможность непосредственного применения стальных и цинковых деталей для отделения медных контактов, которые плохо склеиваются с основным металлом.

    Поэтому перед нанесением меди на стальные детали в кислотных электролитах они предварительно сохраняются в цианидных электролитах или наносимых тонких никелевых пластин. Недостатки сульфатных электролитов также являются их незначительной рассеивающей способностью и более грубыми: структура осаждения по сравнению с другими электролитами.

    Электролиты щелочной меди покрывают цианидом, пирофосфатом и другими электролитами.

    Цианид-медные электролиты обладают высокой дисперсионной способностью, мелкокристаллической структурой осаждения, возможностью непосредственных медных табличных объектов. К недостаткам относятся низкая плотность тока и нестабильность состава за счет карбонизации свободного цианида под воздействием углекислого газа в воздухе.

    Быстрое накопление меди.

    Кроме того, цианидные электролиты характеризуются сниженной мощностью тока (не более 60-70%).

    Будьте осторожны! Компания «LV-Engineering» не предоставляет услуги по гальванизации! Наша организация осуществляет проектирование гальванических изделий, производство гальванических ванных комнат и полипропиленовых линий, монтажные и пуско-наладочные работы в данном направлении.

    Сульфат меди — 150-250 г / л
    Никель-хлорид — 50-70 г / л
    Температура = 18-25 ° C
    Плотность тока составляет 1-4 А / дм2

    Когда электролит смешивается со сжатым воздухом, плотность катодного потока может быть подключена к 6-8 А / дм2.

    Для приготовления медносульфатного электролита растворите сульфат меди, процедите в рабочую пантеру и добавьте серную кислоту при непрерывном перемешивании.

    Когда медные покрытия наносят из сульфатного электролита, аноды меди сначала растворяются с образованием двухвалентных ионов, которые осаждаются в виде металлической меди при выгрузке на катод.

    Однако наряду с этими процессами существуют и другие, которые препятствуют нормальному течению электролиза. Анодное растворение возможно также при образовании одновалентных ионов, хотя и в меньшей степени.

    В электролите, который удаляет медный металл, существует также химически обратимый процесс: Cu + Cu2 + = 2Cu +.

    Накопление ионов иона иона в растворе в больших количествах приводит к тому, что реакция перемещается влево, а это означает, что к нему принадлежит медная медь.

    Раствор также окисляет сульфаты меди из-за атмосферной серной кислоты N, особенно воздуха во время смешивания: Cu2SO4 + 1 / 2O2 + H2SO4 = 2CuSO4 + H2O.

    На катоде в процессе отходящий двухвалентных и одновалентных ионов меди, но из-за того, что концентрация ионов одновалентной меди около 1000 раз ниже, чем концентрация ионов двухвалентной меди, катодная методом электроосаждения выглядит следующим образом: Cu 2+ + 2e = Cu. Токовый выход составляет 100%.

    Присутствие сорбиновой кислоты требуется для получения плотного гладкого осадка в электролите.

    Серная кислота выполняет множество функций: она значительно увеличивает электропроводность электролита; он уменьшает активность ионов меди, что способствует образованию мелких зерен; предотвращает гидролиз сульфата железа, что сопровождается образованием свободного осадка из оксида меди.

    Ошибки электролита медно-сульфатного электролита и методы их устранения

    ошибка Причина ошибки средство
    Грубая структура грубых осадков Кислотный дефицит Добавить кислоты
    Высокая плотность тока Уменьшить плотность тока
    Грубые сквозняки Загрязнение электролита механическими примесями Фильтровать электролит
    Черные и коричневые линии на обложке Наличие в электролитных примесях тяжелых металлов, мышьяка, сурьмы Проверьте электролит с высоким содержанием примесей, замените электролит
    Пористые, рыхлые отложения Присутствие солей железа в электролите
    На крышке есть яркие блестящие линии, которые являются хрупкими Присутствие органических примесей в электролите Фильтруйте электролит и заряжайте его электричеством

    Борфторогидроэфир имеет немного большую мощность распыления, чем серная кислота.

    Кроме того, флюсы высокой плотности могут использоваться в борфтористоводных электролитах. Состав электролита (г / л) и способ применения меди:

    Читайте также:  Чем кормить опарышей для рыбалки

    Гидрохлорид борфторида меди — 35-40 г / л
    Борная кислота — 15-20 г / л
    Соляная кислота — 15-20 г / л
    Никель-хлорид — 50-70 г / л
    Температура = 18-25 ° C
    Плотность тока = до 10 А / дм2

    Электролит смешивают со сжатым воздухом или механической мешалкой.

    Свежую измельченную углеродную медь вводили небольшими порциями для приготовления скважинного углеводородного электролита в борфтористовородной кислоте.

    Раствор углеродной меди готовят путем нагревания нагретого концентрированного раствора сульфата натрия в раствор сульфата меди путем смешивания. Полученный осадок декантируют, промывают и растворяют в борфтористой кислоте. К желаемому раствору добавляют свободную бороновую кислоту и борную кислоту до желаемого значения рН (1-1,5). Добавить воду на рабочую поверхность в ванне с электролитом.

    Если перед вами стоит задача омеднения каких-либо деталей в автомобиле, то оказывается это вполне возможно сделать в домашних условиях. Для этого не потребуется особых знаний и умений, да и все материалы и реагенты вполне можно найти в магазинах или своих запасах. Что же, давайте посмотрим как можно сделать омеднение.

    Когда делают омеднение и можно ли его использовать для коррозионного покрытия

    Прежде чем рассказать о самом процессе, хотелось бы сказать пару слов о прагматичности такой операции.

    Многие из автолюбителей не особо знакомых с химией сейчас скажут о необходимости омеднения всего чего попадется под руку, но мы вас предостерегаем от этого! Почему!? Да потому что все металлы между собой образуют гальваническую пару. Такая гальваническая пара образуется даже при попадании воды, а если средой будет еще и кислота, то процесс пойдет в разы быстрее.

    Суть процесса в гальванической паре сводится к следующему. Более активный металл отдает свои электроны, а менее активный принимает. Вот так и образуется самая простая «батарейка» в которой протекает электрический ток.

    Давайте теперь взглянем на стандартные электродные потенциалы:

    — для меди Е0(Сu2+/Cu)=0,34В;
    — для железа E0(Fe2+/Fe)=-0,44В.

    В итоге получается не все так гладко.

    Ведь в такой гальванической паре У железа электродный потенциал более активным. Опять же у меди электродный потенциал более положителен, чем у железа, поэтому она будет менее активна.

    В итоге электроны потекут от железа к меди, что приведет к коррозии железа.

    Все это мы рассказали к тому, что бездумно покрывать медью все что вам попадется под руку на машине не рекомендуется. Ведь в этом случае вы можете значительно сократить жизненный цикл многих железных деталей (крепеж, кузовные детали).

    Гальваническое меднение

    Не зря для сохранения железа применяют цинк, там ситуация с электродными потенциалами обратная.

    Однако омеднение может применяться для декоративной отделки железа, если покрытие будет находиться в сухости.

    Также медь может применяться в случаях, где необходимо обеспечить передачу электрического тока между контактами. Опять же надо следить за их чистотой.
    Медь может применяться в условиях применения пар с незначительным трением скольжения. Все это в целом вполне жизнеспособные варианты. А значит и омеднение все же имеет шанс на его реализацию.

    Тогда не будем более медлить, расскажем непосредственно о процессе омеднения.

    Процесс омеднение деталей в домашних условиях (расчет слоя покрытия при определенном токе)

    Омеднение происходит в растворе. По сути этот процесс обратный гальванической паре, то есть тому, о чем мы рассказывали в абзаце выше.
    Для раствора нам понадобиться кислота, можно взять электролит используемых для аккумуляторов. Воду и медный купорос.

    Для раствора берется 100 мл электролита на 20 мл воды и добавляется 20 г медного купороса.

    В качестве донора меди можно взять медные пластинки или обычный медный провод, предварительно очищенный от изоляции. Итак, именно в этот самый раствор и помещаем медь. При этом подключаем блок питания постоянного напряжения питания к меди (+) и к железу (-). Ток на блоке питания выставляем тот, при котором мы планируем за определенный период времени нанести определенный слой меди. Это уже задача по химии школьной программы.

    И получается все так…

    I= (плотность меди (8920 кг/м3)*площадь детали (скажем 0,1 м3)*(требуемый слой (скажем 0,0001 м, то есть 0,1 мм))/ (электрохимический эквивалент для меди это 6,6*〖10〗^(-7)
    * желаемое время, скажем 3 часа – 10800 секунд). Считаем…
    I=8920*0,1*0,0001/0,0000066*10800=0,0892/0,07128=1,25 А

    То есть за 3 часа при токе 1,25 А у нас будет покрытие в 0,1 мм на детали площадью 0,1 м3. Вот как-то так и считаем все аналогичные вариации.

    А да, время от времени не забываем помешивать раствор, чтобы процесс шел равномерно.

    После того как омеднение завершено, вытаскиваем детали из раствора и отмываем хорошо с щелочью, то есть с мылом.

    Если есть каике-то заусенцы и отклонения от формы, то их вполне можно пройтись наждачной бумагой и заполировать.

    Собственно вы теперь не меньше знаете, как производить омеднение поверхности.

    Надо сказать, что по тому же принципу производится и оцинкование и хромирование… В итоге понимая принцип происходящего процесса можно перенести процесс покрытия поверхности и на другие металлы.

    Состояние электрического тока растворов цианистого меди значительно отличается от тех, которые считаются наиболее благоприятными в кислотных растворах. Из-за того, что образуются сильные сложные ионы и очень низкая скорость диссоциации, активность ионов меди в цианидном растворе настолько мала, что потенциал около 1 В становится более отрицательным, чем раствор серной кислоты.

    Увеличивая плотность тока, катодный потенциал меди в цианидных электролитах, в отличие от кислоты, сильно изменяется в направлении электроотрицательных значений (рис.

    84), который определяет условия кристаллизации и распределения металла на поверхности катода; С этой точки зрения условия в цианидных электролитах чрезвычайно благоприятны.

    Но именно из-за потенциала катода быстро растет с плотностью тока, это не может быть существенно увеличено, в противном случае выходной ток металла может быть сведен к нулю.


    Рис. 84. Кривые поляризации медных электролитов:
    1-сульфатного электролита 1,5-n. CuSO4 + 1,5-n.

    H2S04; 2-цианидный электролит композиции 0,25-n.

    CuCN + 0,6-n. NaCN + 0,25-n. Na2C03; 3 — тот же электролит при 45 ° C; 4 представляет собой тот же электролит в присутствии Na2S2O3

    Еще одно важное различие в кислотности цианидных электролитов следует рассматривать как значительные изменения в характеристиках меди в зависимости от концентрации свободного цианида, в то время как свободная серная кислота оказывает очень мало влияния на характеристики меди в кислотных электролитах.

    Если в растворе, содержащем 9 г меди на литр в форме цианидной соли (0,1 м.

    Гальванизация собственными руками дома: технологии и оборудование

    CuCN) и 13 г / л KCN, медный потенциал -0,60 В, в присутствии 26 г / л KCN этот потенциал равен -0,964 В и в присутствии 65 г / л -1,169 В.

    Катодная поляризация также сильно зависит от концентрации солей меди в электролите, в то время как кислотные электролиты оказывают незначительное влияние.

    Анодный процесс в цианидных электролитах также сопровождается значительной поляризацией, размер которой в основном определяется содержанием свободного цианида.

    Отсутствие цианидного анода неактивно до полного растворения их растворения. Таким образом, содержание свободного цианида оказывает диаметрально противоположное воздействие на процессы катодного и анодного; Сначала требуется минимальное содержание свободного цианида (катодная плотность тока может быть выше, чем ниже цианид в электролите), второй — по величине (анод пассивации начать с самой высокой плотностью тока, тем выше содержание цианида).

    Это значительно ограничивает выбор концентрации цианида, который является основным компонентом электролита из соли меди.

    Для большинства цианидов электролиты не могут полностью использовать методы, которые позволяют им использовать увеличенную плотность тока, такую ​​как смешивание или значительное повышение температуры, по той причине, что эти процессы ускорили гидролиз цианида. Даже в состоянии покоя при комнатной температуре цианид электролита разрушается быстрее, чем кислота, что приводит к абсорбции углекислого газа из воздуха.

    Электролиты из цианид-меди, нанесенные на катод, извлечение из одновалентных ионов, т. Е. При 1 Ач теоретически получают в два раза больше меди, чем в кислотных электролитах, где медь присутствует в виде двухвалентных ионов.

    Тот факт, что цианистые электролитный баланс потенциал медь сильно отрицательная с более высоким потенциалом плотности тока переместился от электрических величин служат в качестве основы для суждения невозможности осаждения меди из цианистых электролитов при высоких плотностях тока (по заказу 10 А / дм 2) с теоретическим или вблизи теоретического выхода поток.

    На самом деле это справедливо только для разбавленных цианидных электролитов, не страдают от перемешивания и нагрева. При определенных условиях медь может выделяться на электролитах с цианидным катодом, особенно при низком содержании свободного цианида в электролите при высоких температурах и при смешивании при достаточно высокой плотности тока и эффективности тока, близкой к теоретической.

    На самом деле, меднение в домашних условиях проводят многие умельцы в первую очередь для того, чтобы подготовить поверхность металла к последующей обработке различными защитными слоями.

    Данной операции можно подвергать поверхности самых разных металлов и неметаллов, в том числе, стали, латуни, никеля и так далее.

    Человечество используется в своих целях медь на протяжении многих тысячелетий и связано это, прежде всего с тем, что данный металл находится в природе в самородном состоянии, а кроме этого, обладает рядом уникальных свойств.

    В настоящее время медь и самые разные сплавы на ее основе востребованы во многих промышленных сферах.

    Без нее не может обойтись авиастроение, автомобилестроение, приборостроение и многие другие отрасли.

    Медь и ее многочисленные сплавы достаточно распространены и в бытовой сфере.

    Следует отметить и то, что добавки меди в различных сочетаниях позволяют эффективно защитить поверхности многих металлов, например, стали, латуни или никеля от различных агрессивных сред.

    Один из наиболее распространенных способов покрыть тонким слоем металлическую поверхность — это выполнить нанесение меди.

    В условиях дома в большинстве случае выполняется химическое меднение, причем существует несколько различных способов, каждый из которых имеет как свои плюсы, так и минусы.

    Один из способов выполнить гальваническое нанесение меди в условиях дома, показан на видео ниже.

    Как уже было сказано выше, в природе медь, как правило, находится в виде небольших самородков.

    Это уникальное вещество представляет собой достаточно тяжелый металл, который на вид напоминает самородок яркого розово-красного оттенка.

    Этот металл обладает относительной мягкостью и высокой ковкостью, кроме этого, имеет температуру плавления порядка тысячи ста градусов по Цельсию.

    Он великолепно проводит не только тепло, но и электрический ток, что и объясняет повышенный спрос на данный металл в электротехнике и приборостроении.

    В большинстве случаев в природе медь находится не в чистом состоянии, а с различными примесями.

    Всевозможные природные добавки в зависимости от различных факторов в металле могут варьироваться и различаться приблизительно от десяти до пятидесяти раз.

    Для данного металла большое значение имеет содержание в нем кислорода, и в зависимости от количества этого элемента в состав меди, разработана определенная классификация.

    Так, медь может быть бескислородной и рафинированной.

    Кроме этого, бывает медь с большим содержанием кислорода в своем составе, а также общего назначения, когда содержание кислорода максимальное.

    Помимо данного элемента в этом металле также может находиться водород, попадающий туда за счет электролиза или отжига.

    Медь имеет определенную кристаллическую решетку, и атомы водорода занимают в ней пространство в междоузлиях, а это значит, что на ее свойства они не оказывают практически никакого влияния.

    Если медь в своем составе содержит в определенном количестве кислород, то водород имеет свойство определенным образом взаимодействовать, но только при достаточно высоких температурах с медной закисью, и в этом конкретном случае начинает формироваться водяной пар, который имеет достаточно высокие показатели давления.

    Это оказывает негативное влияние на металл в целом и может привести в некоторых случаях к образованию вздутий, а также трещинам и разрывам.

    Такое отрицательное воздействие у химиков получило название водородная болезнь.

    На изменении показателей пластичности у меди в худшую сторону могут оказать влияние присутствие железа, сурьмы.

    Те примеси, которые относятся к группе малорастворимых, понижают хрупкость этого металла, но только при достаточно высоких внешних температурах, а это значит, что для меди крайне нежелателен процесс обработки горячим давлением.

    На видео выше показано химическое меднение данного металла.

    Особенности меднения

    Для выполнения меднения на поверхности стали, никеля, либо каких-то других металлов, применяется гальваника, при которой образуется тонкий медный слой.

    Гальваническое нанесение меди представляет собой достаточно сложное химическое меднение, которое оказывает влияние на состав материала.

    Гальваническое нанесение является предварительным, перед тем, как на поверхность никеля или другого металла будет нанесен различный защитный состав.

    Гальваническое меднение свинца и других материалов, как правило, выполняется перед тем, как будет произведено хромирование, никелирование и так далее.

    В данном случае медь выступает в качестве своеобразного припоя или другими словами — дополнительной добавки.

    О том, как самостоятельно выполняется гальваника, показано на видео ниже.

    Нанесенная таким образом медь в качестве припоя на поверхность никеля или какого-либо иного металла, способна достаточно прочно держаться, а кроме этого, способствует устранению некоторых дефектов.

    На обработанную таким образом поверхность достаточно хорошо осаждаются многие другие материалы в качестве припоя.

    Такие медные покрытия в качестве припоя практически не меняют состав исходного металла и характеризуются высоким сцеплением, хорошей электропроводностью, а также пластичностью.

    Медь — это своеобразный блескообразователь в виде припоя, который практически не меняет исходный состав металла и выступает в качестве своеобразной добавки.

    Основным методом нанесения данного металла (припоя) на поверхность никеля, стали и так далее является гальваника, и о том, как это сделать в домашних условиях, рассказывает видео ниже.

    Способы нанесения

    Для выполнения меднения в условиях дома не нужно обладать какими-то специфическими знаниями, достаточно только знать курс школьной химии.

    За счет меднения, поверхности никеля или других материалов не меняют свой основной состав, так как оно выступает в качестве своеобразного припоя.

    Для меднения в условиях дома потребуются достаточно примитивные материалы, которые можно приобрести в любом специализированном магазине.

    Процедуру покрытия медью в качестве припоя можно выполнить с погружением в электролиты для меднения (раствор) и без погружения.

    И в том, и в другом случае перед тем, как приступить к меднению, обрабатываемую деталь необходимо правильно подготовить.

    Читайте также:  Вес летней мормышки с поплавком

    Для этого она проходится наждачной бумагой, тщательно протирается щеткой с металлической щетиной и промывается под проточной водой.

    Кроме этого, к меднению следует переходить после того, как заготовка будет обезжирена, для чего используют раствор на основе соды в подогретом состоянии.

    Между данными анодами размещают подлежащую обработке деталь, которую подключают к минусу, соответственно, аноды к плюсу источника постоянного тока.

    Также для меднения в цепь обязательно необходимо включить реостат.

    После этого для выполнения меднения в условиях дома готовят специальный состав электролита, раствор с медным купоросом, серной кислотой и водой в определенных пропорциях.

    После выполнения меднения сернокислое соединение сливают, заготовку промывают и тщательно высушивают.

    На видео ниже показан процесс меднения в домашних условиях.

    Меднение алюминия, меднение стали или цинка проводят способом без погружения в состав электролита.

    В этом случае деталь также подготавливают к меднению путем тщательной обработки и промывки.

    На проводе для удобства делают ручку и один из его концов подключают к плюсу постоянного источника тока.

    После этого для выполнения меднения готовят специальный электролит — раствор с добавлением медного купороса и выливают его в емкость.

    После этого раствор подключают к напряжению и при помощи кисти начинают обрабатывать деталь, нанося таким образом блескообразователь.

    Процессу меднения подвергают всю заготовку (раствор) в течение нескольких минут.

    По завершению меднения, раствор убирают, деталь промывают и тщательно высушивают. Процесс меднения без погружения в электролит показа на видео ниже.

    Подвергнуть меднению можно практически любой металл, наложив, таким образом, на его поверхность защитное покрытие в виде слоя меди.
    Видео:

    Меднение – это процесс нанесения на поверхность медного слоя гальваническим способом.

    Медный слой придает изделию внешнюю привлекательность, что позволяет использовать прием гальванического покрытия медью в дизайнерских проектах. Также он придает металлу высокую электропроводность, что позволяет подвергать изделие дальнейшей поверхностной обработке.

    Меднение можно использовать в качестве основного процесса для создания поверхностного слоя, а также как промежуточную операцию для дальнейшего нанесения другого металлического слоя. К такому способу можно отнести, например, процесс серебрения, хромирования или никелирования.

    Меднение можно проводить в домашних условиях. Это дает возможность решить много бытовых проблем.

    Гальваника в домашних условиях: оборудование и материалы

    Чтобы выполнить покрытие медным слоем самостоятельно, нужно приобрести необходимое для процесса оборудование и материалы.

    Прежде всего, нужно подготовить источник электрического тока. Разные домашние мастера советуют использовать силу тока, разброс которой в большом диапазоне. Работа должна проводиться на постоянном токе.

    В качестве источника тока можно взять батарейку КБС-Л напряжением 4,5 вольт или новую батарейку марки «Крона» с рабочим напряжением 9 вольт. Можно также вместо нее использовать выпрямитель малой мощности, дающий напряжение не более 12 вольт, или автомобильный аккумулятор.

    Обязательным является использование реостата для регулировки напряжения и плавного выхода из процесса.

    Для раствора электролита должна быть заготовлена нейтральная емкость, например из стекла, а также пластиковая широкая посуда, имеющая достаточные размеры для размещения в ней детали. Емкости должны выдерживать температуру не менее 80оС.

    Также понадобятся аноды, обеспечивающие покрытие всей поверхности детали. Они предназначены для подведения тока в электролитный раствор и его распределение по всей площади детали.

    Для проведения гальваники в домашних условиях понадобятся также химреактивы для приготовления раствора:

    • медный купорос,
    • соляная или другая кислота,
    • дистиллированная вода.

    Заготовив все необходимое, можно приступать к работе.

    Меднение стальных изделий

    Меднение стали медным купоросом является одним из основных процессов в области гальваники потому, что оно используется для предварительного покрытия медью. Она отличается высокой адгезией к стальной поверхности, в отличие от других металлов, которые не обладают хорошим сцеплением со сталью. Медный слой при соблюдении технологии держится на стальных изделиях прекрасно.

    Есть две технологии нанесения покрытия: с погружением изделия в электролитный раствор и способ неконтактного покрытия поверхности медью без помещения в жидкий электролитный раствор.

    Меднение путем погружения в раствор

    Процесс выполняется с соблюдением следующих этапов:

  • С поверхности стальной детали удаляется окисная пленка с помощью наждачной бумаги и щетки, а затем деталь промывается и обезжиривается содой с финишной промывкой водой.
  • В стеклянную банку помещаются две медные пластины, подсоединенные к медным проводникам, которые служат анодом. Для этого их соединяют вместе и подводят к положительной клемме прибора, используемого в качестве источника тока.
  • Между пластинами свободно подвешивается обрабатываемая деталь. К ней подводится отрицательный полюс клеммы.
  • В цепь встраивается тестер с реостатом, чтобы регулировать силу тока.
  • Готовится электролитный раствор, в состав которого обычно входит медный купорос – 20 грамм, кислота (соляная или серная) – от 2 до 3 мл, растворенная в 100 мл (лучше дистиллированной) воды.
  • Готовый раствор заливается в подготовленную стеклянную банку. Он должен покрыть помещенные в банку электроды полностью.
  • Электроды подключаются к источнику тока. С помощью реостата устанавливается ток (10-15 мА должны приходиться на 1см2 площади детали).
  • Через 20-30 минут ток отключается, и деталь, покрытая медью, достается из емкости.

    Покрытие медью без помещения в электролитный раствор

    Такой способ используется не только для стальных изделий, но и алюминиевых предметов и изделий из цинка. Процесс осуществляется так:

  • Берется многожильный медный провод, с одного конца которого снимается изоляционное покрытие, а проводкам из меди придается вид своеобразной кисточки. Для удобного использования «кисть» закрепляют на ручке — держателе (можно взять деревянную палку).
  • Другой конец провода без кисти подсоединяется к положительной клемме используемого источника напряжения.
  • Готовится электролитный раствор на основе концентрированного медного купороса с добавлением небольшого количества кислоты. Он наливается в широкую емкость, необходимую для удобного окунания кисти.
  • Подготовленная металлическая деталь, очищенная от оксидной пленки и обезжиренная, помещается в пустую ванночку и подсоединяется к отрицательной клемме.
  • Кисть смачивается приготовленным раствором и водится вдоль поверхности пластины, не прикасаясь к ней.
  • После достижения необходимого медного слоя, процесс заканчивается, а деталь промывается и сушится.

    Между поверхностью детали и импровизированной медной кистью всегда должен быть слой из раствора электролита, поэтому кисть необходимо обмакивать в электролит постоянно.

    Меднение алюминия медным купоросом

    Нанесение на поверхность меди – отличный способ обновления алюминиевых столовых приборов и других изделий из алюминия, используемых дома.

    Меднение алюминия медным купоросом можно провести самостоятельно. Упрощенный вариант для демонстрации процесса – это покрытие медью алюминиевой пластинки простой формы.

    На этом примере можно потренироваться. Выполнение процесса происходит так:

    1. Поверхность пластинки необходимо сначала зачистить, а затем обезжирить.

    2. Затем нужно нанести на нее немного концентрированного раствора сернокислой меди (медного купороса).

    3. Следующим действием является подсоединение к алюминиевой пластинке провода, подсоединенного к отрицательному полюсу. Подсоединять провод к пластинке можно с помощью обычного зажима.

    4. Положительный заряд подается на устройство, состоящее из оголенного медного провода с диаметром от 1 до 1,5 мм, конец которого распределяется между щетинами зубной щетки.

    Во время работы этот конец провода не должен касаться поверхности алюминиевой пластины.

    5. Обмакнув щетину в раствор медного купороса, начинают водить щеткой в подготовленном для покрытия медью месте. При этом не нужно допускать замыкания цепи, прикасаясь к поверхности алюминиевой пластины концом медного провода.

    6. Омеднение поверхности сразу становится визуально заметно. Чтобы слой был качественным, с окончанием процесса не нужно торопиться.

    7. После завершения работы слой меди нужно выровнять дополнительной очисткой, удалив остатки медного купороса и протерев поверхность спиртом.

    Гальванопластика в домашних условиях

    Гальванопластикой называют процесс электрохимического воздействия на изделие с целью придания ему необходимой формы осаждаемым на поверхности металлом.

    Обычно эту технологию используют для покрытия металлом неметаллических изделий. Широко применяют ее в ювелирной области и дизайне бытовых предметов.

    Покрытие рабочего изделия должно обладать электропроводящими свойствами. При отсутствии такого слоя сначала предмет покрывают графитом или бронзой.

    Основными металлами, используемыми для гальванопластики, являются медь, никель, серебро и хром. Также используют металлизацию поверхностей сплавами из стали.

    Гальванопластика в домашних условиях особенно популярна среди мастеров. Чтобы создать нужную форму, с копии делается ее слепок. Для этого используют легко плавящийся металл, графит и гипс.

    После изготовления формы предмет подвергают покрытию металлом с использованием электролита.

    Меднение — это процесс нанесения на поверхность медного слоя гальваническим способом.

    Медный слой придает изделию внешнюю привлекательность, что позволяет использовать прием гальванического покрытия медью в дизайнерских проектах. Также он придает металлу высокую электропроводность, что позволяет подвергать изделие дальнейшей поверхностной обработке.

    Меднение можно использовать в качестве основного процесса для создания поверхностного слоя, а также как промежуточную операцию для дальнейшего нанесения другого металлического слоя. К такому способу можно отнести, например, процесс серебрения, или никелирования.

    Меднение можно проводить в домашних условиях. Это дает возможность решить много бытовых проблем.

    Чтобы выполнить покрытие медным слоем самостоятельно, нужно приобрести необходимое для процесса оборудование и материалы.

    Прежде всего, нужно подготовить источник электрического тока. Разные домашние мастера советуют использовать силу тока, разброс которой в большом диапазоне. Работа должна проводиться на постоянном токе.

    В качестве источника тока можно взять батарейку КБС-Л напряжением 4,5 вольт или новую батарейку марки «Крона» с рабочим напряжением 9 вольт. Можно также вместо нее использовать выпрямитель малой мощности, дающий напряжение не более 12 вольт, или автомобильный аккумулятор.

    Обязательным является использование реостата для регулировки напряжения и плавного выхода из процесса.

    Для раствора электролита должна быть заготовлена нейтральная емкость, например из стекла, а также пластиковая широкая посуда, имеющая достаточные размеры для размещения в ней детали. Емкости должны выдерживать температуру не менее 80оС.

    Также понадобятся аноды, обеспечивающие покрытие всей поверхности детали. Они предназначены для подведения тока в электролитный раствор и его распределение по всей площади детали.

    Для проведения гальваники в домашних условиях понадобятся также химреактивы для приготовления раствора:

    • медный купорос,
    • соляная или другая кислота,
    • дистиллированная вода.

    Заготовив все необходимое, можно приступать к работе.

    Меднение стальных изделий

    Меднение стали медным купоросом является одним из основных процессов в области гальваники потому, что оно используется для предварительного покрытия медью. Она отличается высокой адгезией к стальной поверхности, в отличие от других металлов, которые не обладают хорошим сцеплением со сталью. Медный слой при соблюдении технологии держится на стальных изделиях прекрасно.

    Есть две технологии нанесения покрытия: с погружением изделия в электролитный раствор и способ неконтактного покрытия поверхности медью без помещения в жидкий электролитный раствор.

    Меднение путем погружения в раствор

    Процесс выполняется с соблюдением следующих этапов:

    1. С поверхности стальной детали удаляется окисная пленка с помощью наждачной бумаги и щетки, а затем деталь промывается и обезжиривается содой с финишной промывкой водой.
    2. В стеклянную банку помещаются две медные пластины, подсоединенные к медным проводникам, которые служат анодом. Для этого их соединяют вместе и подводят к положительной клемме прибора, используемого в качестве источника тока.
    3. Между пластинами свободно подвешивается обрабатываемая деталь. К ней подводится отрицательный полюс клеммы.
    4. В цепь встраивается тестер с реостатом, чтобы регулировать силу тока.
    5. Готовится электролитный раствор, в состав которого обычно входит медный купорос — 20 грамм, кислота (соляная или серная) — от 2 до 3 мл, растворенная в 100 мл (лучше дистиллированной) воды.
    6. Готовый раствор заливается в подготовленную стеклянную банку. Он должен покрыть помещенные в банку электроды полностью.
    7. Электроды подключаются к источнику тока. С помощью реостата устанавливается ток (10-15 мА должны приходиться на 1см2 площади детали).
    8. Через 20-30 минут ток отключается, и деталь, покрытая медью, достается из емкости.

    Покрытие медью без помещения в электролитный раствор

    Такой способ используется не только для стальных изделий, но и алюминиевых предметов и изделий из цинка. Процесс осуществляется так:

    1. Берется многожильный медный провод, с одного конца которого снимается изоляционное покрытие, а проводкам из меди придается вид своеобразной кисточки. Для удобного использования «кисть» закрепляют на ручке — держателе (можно взять деревянную палку).
    2. Другой конец провода без кисти подсоединяется к положительной клемме используемого источника напряжения.
    3. Готовится электролитный раствор на основе концентрированного медного купороса с добавлением небольшого количества кислоты. Он наливается в широкую емкость, необходимую для удобного окунания кисти.
    4. Подготовленная металлическая деталь, очищенная от оксидной пленки и обезжиренная, помещается в пустую ванночку и подсоединяется к отрицательной клемме.
    5. Кисть смачивается приготовленным раствором и водится вдоль поверхности пластины, не прикасаясь к ней.
    6. После достижения необходимого медного слоя, процесс заканчивается, а деталь промывается и сушится.

    Между поверхностью детали и импровизированной медной кистью всегда должен быть слой из раствора электролита, поэтому кисть необходимо обмакивать в электролит постоянно.

    Меднение алюминия медным купоросом

    Нанесение на поверхность меди — отличный способ обновления алюминиевых столовых приборов и других изделий из алюминия, используемых дома.

    Меднение алюминия медным купоросом можно провести самостоятельно. Упрощенный вариант для демонстрации процесса — это покрытие медью алюминиевой пластинки простой формы.

    На этом примере можно потренироваться. Выполнение процесса происходит так:

    1. Поверхность пластинки необходимо сначала зачистить, а затем обезжирить.

    2. Затем нужно нанести на нее немного концентрированного раствора сернокислой меди (медного купороса).

    3. Следующим действием является подсоединение к алюминиевой пластинке провода, подсоединенного к отрицательному полюсу. Подсоединять провод к пластинке можно с помощью обычного зажима.

    4. Положительный заряд подается на устройство, состоящее из оголенного медного провода с диаметром от 1 до 1,5 мм, конец которого распределяется между щетинами зубной щетки.

    Во время работы этот конец провода не должен касаться поверхности алюминиевой пластины.

    5. Обмакнув щетину в раствор медного купороса, начинают водить щеткой в подготовленном для покрытия медью месте. При этом не нужно допускать замыкания цепи, прикасаясь к поверхности алюминиевой пластины концом медного провода.

    6. Омеднение поверхности сразу становится визуально заметно. Чтобы слой был качественным, с окончанием процесса не нужно торопиться.

    7. После завершения работы слой меди нужно выровнять дополнительной очисткой, удалив остатки медного купороса и протерев поверхность спиртом.

    Гальванопластика в домашних условиях

    Гальванопластикой называют процесс электрохимического воздействия на изделие с целью придания ему необходимой формы осаждаемым на поверхности металлом.

    Обычно эту технологию используют для покрытия металлом неметаллических изделий. Широко применяют ее в ювелирной области и дизайне бытовых предметов.

  • Оцените статью
    Adblock
    detector