- Для чего нужен эхолот
- ⚓ Немного теории
- ⛵ Так для чего нужен рыбопоисковый эхолот ?
- Современные эхолоты имеют следующие основные функции:
- 🎣 Рассмотрим их детальнее:
- Сонары
- Сонары
- Принцип действия
- Природа звука под водой
- Обработка сигналов
- Квадратурная модуляция
- Эффект Доплера
- Согласующий фильтр
- Быстрое преобразование Фурье
- Характеристики сонаров
- Передатчик большой мощности
- Эффективный преобразователь
- Чувствительный приемник
- Экран с высоким разрешением и контрастностью
- Рабочая частота сонаров
- Преобразователи
- Угол излучения преобразователя
- Состояние воды и дна
- Применение сонара
Для чего нужен эхолот
Практически каждый начинающий рыбак в начале своего пути задумывается о приобретении такого устройства, как эхолот. И это не удивительно, ведь использование эхолота, позволяет существенно упростить рыбалку и увеличить шансы на поимку большего количества рыбы. Благодаря эхолоту Вы получаете возможность заглянуть в толщу воды и определить наиболее рыбные места. На этом сайте вы узнаете ответы на интересные, часто задаваемые вопросы по эхолотам. Как правильно запитать, настроить и работать с устройством. Как правильно монтировать датчик эхолота (скачать инструкции) и получить помощь по квалифицированному ремонту эхолотов.
⚓ Немного теории
Гидролокатор , Сонар (англ. SONAR , аббревиатура от SOund Navigation And Ranging) — средство звукового обнаружения подводных объектов с помощью акустического излучения. Технология сонара основана на отражении звуковых волн. Сонар создает звуковые импульсы, которые посылаются в толщу воды лучем каплеобразной формы.
Эхолот — узкоспециализированный гидролокатор, устройство для исследования рельефа дна водного бассейна. Обычно использует ультразвуковой трансдьюсер, а также процессор для обработки полученных данных и отрисовки топографической карты дна. Эхолот посылает сигнал (звуковую волну) и определяет дистанцию до объекта путем измерения времени между моментом отправки сигнала и моментом, когда звуковая волна возвращается, отражаясь от объекта. Этот отраженный сигнал затем анализируется прибором для определения местоположения, размера и типа объекта. Сонар работает очень быстро. Звуковая волна способна пройти от поверхности до глубины 70 м и вернуться назад, менее чем за 1/4 секунды. Звуковые импульсы возвращаются в виде «эха», отражаясь от объектов в воде, таких как дно, рыба и так далее. Возвращенные звуки обрабатываются электроникой и отображаются на экране. Каждый раз при получении нового сигнала, предыдущий проходит через дисплей, образуя прокручиваемую картинку.
Многие задаются вопросом, нужен ли мне эхолот, какие бывают эхолоты, а главное — какой эхолот выбрать? Тогда вперёд и вы узнаете ответы на свои вопросы…
⛵ Так для чего нужен рыбопоисковый эхолот ?
Казалось бы, ответ очевиден — для поиска рыбы. Однако, это не единственная полезная функция этого прибора. На что способен эхолот и как правильно им пользоваться? В этой статье мы рассмотрим все подводные камни в использовании данного устройства. Из чего складывается функция обнаружения рыбы с помощью эхолота? В первую очередь, из логических выводов, которые делает рыбак, считывая показания прибора. Главное — помните о том, что эхолоты нормально работают только при движении лодки и показывают подводный мир только под лодкой.
Современные эхолоты имеют следующие основные функции:
Измерение глубины;
- Определение структуры дна;
- Измерение температуры воды;
- Исследование состояния воды и дна;
- Изображение объектов в толще воды;
- Измерение скорости движения лодки; (*)
- Измерение атмосферного давления; (*)
- Определение координат местонахождения и направление движения (функция GPS); (*)
(*) — только определённые модели.
🎣 Рассмотрим их детальнее:
Измерение глубины. Это одна из самых важных функций эхолота. Еще до изобретения этого прибора рыбаки использовали различные методы для того, чтобы измерить глубину в местах ловли. Данные, которые мы получаем на этом этапе, позволяют определить, перспективное ли место для ловли рыбы мы выбрали. Функция измерения глубины заложена практически во всех современных эхолотах и отличаются максимальной точностью.
Определение структуры дна. После того, как мы получили данные о глубине на месте предполагаемой ловли рыбы, нам будет полезно узнать структуру дна. Эхолот выводит на экран достаточно четкое изображение контура дна- бровки, бугры, камни, ямы… Однако для того, чтобы правильно интерпретировать то, что мы видим на экране, стоит помнить о том, что луч эхолота отражает события с учетом временного масштаба. Говоря простым языком, то, что мы видим на экране — это временная проекция, а не картинка в реальном времени. Ведь сигналу луча эхолота требуется время, чтобы дойти до дна и, отразившись от него, «вернуть» полученную информацию наверх. Ближе к левому экрану эхолота отображается событие, которое произошло позже. В данном случае под «событием» подразумевается фрагмент изображения. То есть, картинка на экране формируется совокупностью событий, происходящих в поле луча эхолота. Таким образом, рисуется и рельеф дна, и термоклин, и отображение объектов в воде. Тем, кто пользуется эхолотом, необходимо понимать, что сам по себе эхолот- это всего лишь вспомогательное средство, дающее пищу для размышлений и логических выводов. Чем детальнее будет исследован один отдельно взятый участок воды, тем более полную картину того, что происходит под лодкой, можно будет составить. Разные модели эхолотов имеют разные размеры экрана и разрешающую способность экрана. И чем больше точек отображает экран эхолота по вертикали, тем детальнее будет изображение. А чем больше горизонтальных точек поддерживает экран прибора, тем дольше вы сможете наблюдать за изображением. То есть, чем больше разрешение, тем четче будет картинка. И это вопрос не столько эстетического, сколько практического характера. Экран с низким разрешением просто не сможет отобразить мелкие детали, и все изображение будет «смазанным» и искаженным. Размер дисплея тоже играет не последнее значение. Очевидно то, что, чем больше экран, тем нагляднее изображение. Еще одно преимущество большого дисплея — это возможность делить его на окна для просмотра дополнительной информации. Третий и последний параметр, который влияет на качество картинки на дисплее — это цветность.
Температура воды имеет важное влияние на поведение рыбы. Рыба хладнокровна, и температура их тела — это всегда температура окружающей воды. Во время зимы, холодная вода замедляет их метаболизм. В это время, они нуждаются приблизительно в одной четверти пищи потребляемой летом. Датчик температуры поверхности воды включен во многие эхолоты, помогая определить благоприятную температуру для разных разновидностей рыб. Окунь и другая рыба, в конечном счете, становятся пассивными в озерах, которые остаются слишком холодными в течение лета. В то время как у некоторых рыб более широкий температурный допуск, чем у других, каждый вид все равно имеет некоторый диапазон температур, в пределах которого он старается находиться.
Исследование состояния воды и дна. Тип воды, в которой вы используете гидролокатор, воздействует на его работу в значительной степени. Звуковые волны проходят легко в чистой пресной воде, такой как во внутренних озерах. Однако в соленой воде, звук поглощается и отражается растворенными в воде солями. Высокочастотные волны наиболее восприимчивы к этому рассеиванию звуковых волн и не могут проникать через соленую воду также хорошо как низкочастотные волны. Грязь, песок, и растительность на дне водоема поглощают и рассеивают звуковой сигнал, уменьшая силу отраженных сигналов. Скалы, сланец, кораллы и другие жесткие объекты отражают звуковой сигнал легко. Вы можете видеть различие на экране вашего гидролокатора. Мягкое дно, типа ила, видно как тонкая линия поперек экрана. Жесткое дно, типа скалы, видно как широкая полоса на экране эхолота.
Рыболовный эхолот, со встроенным GPS навигатором заменят рыболову множество функций, так, например, вам не нужно будет запоминать перспективные точки, где вы поймали рыбу, для этого будет достаточно лишь ввести координаты этого места в память эхолота, и впоследствии вы без труда сможете вернуться на перспективную точку.
Экраны эхолота делятся на два вида — цветные и монохромные, то есть черно — белые. У каждого свои преимущества и свои недочеты.
Монохромный экран . Монохромные экраны эхолота отличаются количеством градаций серого цвета. Этот уровень отвечает за плотность изображаемого на экране объекта. Если экран эхолота отображает всего 4 градации серого, то некоторые объекты просто не будут отображаться на экране, или их изображение будет слишком утрированным. Но при этом изображение на таком экране будет очень контрастным и четким. Более новые модели эхолотов отображают 16 уровней серого цвета. Изображение на экранах таких эхолотов детальное и максимально совпадает с действительностью.
Цветной экран . Эхолоты с цветными экранами могут отображать объекты 256 цветовыми оттенками. На сегодняшний день это наиболее передовая технология передачи изображения. Единственный недостаток цветного экрана — это то, что при ярком солнечном свете будет сложнее рассмотреть изображение на экране.
Подведем итоги. Из всего вышесказанного можно сделать вывод, что рыболовный эхолот помогает рыболову в этом нелёгком деле — поиске рыбы, поэтому его стоит приобрести. Эхолот заметно облегчает жизнь рыболова, позволяя последнему наслаждаться рыбалкой, но это не значит, что этот чудо прибор будет сам ловить рыбу за вас, без человека не обойтись. Техника создана, чтобы помогать, а не заменять человека.
Далее подробно о том, как правильно настроить эхолот, как им пользоваться на воде, как правильно установить датчик и на что обратить внимание, при выборе эхолота.
Сонары
Сонары
С онар — средство звукового обнаружения подводных объектов с помощью акустического излучения. Слово «сонар» происходит от англ. «sound navigation and ranging».
Принцип действия
По принципу действия сонары делятся на активный и пассивный.
- Пассивные — позволяющие определять место положения подводного объекта по звуковым сигналам, излучаемым самим объектом (шумопеленгование)
- Активные — использующие отражённый или рассеянный подводным объектом сигнал, излучённый в его сторону сонаром
Рис. 1. Принцип действия сонара
Электрический импульс от передатчика превращается преобразователем в звуковую волну, которая распространяется в водной среде. Когда звуковая волна встречает на своем пути какое-либо препятствие, то часть ее отражается и возвращается обратно к преобразователю. Преобразователь превращает отраженную звуковую волну в электрический импульс, который усиливается приемником и выводится на дисплей. Так как скорость звука в воде постоянна (примерно 1500 м/с), то, измеряя время между отправкой сигнала и возвращением отраженного эха, можно определить расстояние до найденного объекта.
Природа звука под водой
Вода, в отличие от воздуха, имеет свойство распространять звуковые колебания на большие расстояния, в этом причина использования звуковых волн под водой. Электромагнитные волны не используются, так как они распространяются лишь на небольшие расстояния.
На распространение звуковых волн в водной среде влияют факторы:
- частота и амплитуда звуковой волны
- температура
- соленость
- глубина воды
- расстояние распространения звука
- другие факторы — неоднородности в воде, участки с турбулентностью, состояние поверхности воды, тип дна
Средняя скорость звука в воде – 1480 м/с, граничные скорости: от 1450 до 1540 м/с.
Обработка сигналов
- 1. Генератора синусоидальных импульсов. Генератор состоит из двух компонентов: усилитель, выход которого подключен к собственному входу («положительная обратная связь»), из-за чего происходят колебательные отклонения сигнала; электрический фильтр, внутри которого находятся катушки индуктивности и конденсаторы, сопротивление которых зависит от частоты подаваемого сигнала. На определенных частотах сопротивление возрастает, что препятствует прохождению сигнала
- 2. Группа фильтров. Они занимаются амплитудным и фазовым затенением, формированием направления и формы пучка
- 3. Сигнал подается на усилитель и на антенну, где он преобразуется в звуковые колебания. Излучаемый звуковой сигнал называется импульсом. Импульс движется к исследуемому объекту, отражается от него и возвращается назад к сонару. Сонар в это время находится в пассивном режиме и ожидает возвращения импульса, который снова переводится в электрический сигнал. Длительность импульса должна быть меньше времени, за которое импульс движется от сонара к цели и обратно, иначе на приемнике результат будет суммироваться с исходящими волнами
Еще раз рассмотрим фильтры и процессы, которые сигнал проходит после до того, как будет излучен антенной.
Квадратурная модуляция
Чем выше частота звука (соответственно, меньше длина волны), тем выше разрешающая способность сонара (более мелкие элементы могут быть обнаружены). С другой стороны, высокая частота несет меньше энергии в каждом колебании, поэтому оно подвергается большему воздействию шума, и отношение сигнал-шум уменьшается.
Рассмотрим одно отдельное колебание. Оно несет в себе максимум и минимум своей амплитуды. Информацию при этом передает максимум амплитуды, а минимум фактически не используется. Если дублировать исследуемый сигнал, сместить его по фазе на 90 градусов и сравнить с исходным, то максимум второго сигнала окажется на одном уровне с минимумом первого. Если передавать одновременно в одном канале эти два сигнала, их частоты останутся прежними, однако информационная насыщенность возрастет в 2 раза, так как передающий информацию максимум амплитуды будет встречаться в 2 раза чаще. Такая одновременная передача двух сигналов называется квадратурной модуляцией.
Эффект Доплера
Эффект изменения частоты звука при движении называется эффектом Доплера. Эффект Доплера для электромагнитных волн существенно отличается от наблюдаемого в воздухе, так как для электромагнитных волн отсутствует какая-либо среда-посредник, являющаяся третьей стороной в контакте приемника и передатчика волны.
Согласующий фильтр
Принятый сигнал сравнивается с исходным. В согласующем фильтре сигнал не только делится на фрагменты и сравнивается, но и суммируется с исходным сигналом, что позволяет уменьшить количество шумов, которые испытал на себе сигнал во время движения к цели и обратно. Здесь же первично оцениваются искажения сигнала и производится определение причины искажений.
Быстрое преобразование Фурье
В синусоиде, которая представляет сигнал, информация повторяется много раз. После преобразования Фурье эти повторения информации исчезают. Быстрое преобразование Фурье позволяет выполнять преобразование с меньшим количеством вычислений.
Что происходит с сигналом по прибытии на антенну:
- 1. Предварительный усилитель и фильтр полосы частот
- 2. Автоматическая регулировка усиления
- 3. Квадратурная демодуляция
- 4. Фильтр сглаживания и преобразование в цифровой вид
- 5. Переход в согласующий фильтр (компрессия импульса, описанные выше действия; компенсация движения, микро-навигация, автофокус, искусственные методы повышения разрешения) 6. Обработка изображения (формирование частей изображения, объединение их, программируемые обнаружение и классификация целей)
- 7. Вывод на экран монитора
Характеристики сонаров
Общие требования к системе:
Передатчик большой мощности
Большая мощность передатчика гарантирует возможность получения четкого эхосигнала даже с больших глубин и при плохом состоянии воды и позволяет рассмотреть мелкие детали подводного мира.
Эффективный преобразователь
Прибор должен быть способен не только проводить сигналы высокой мощности, поступающие от передатчика, он должен преобразовывать электрическую волну в звуковую с минимальными потерями. Преобразователь должен распознавать и преобразовывать самое слабое эхо.
Чувствительный приемник
Приемник работает с сигналами в широком диапазоне. Он должен подавлять сигналы большой амплитуды во время работы передатчика и усиливать слабые электрические сигналы, которые возникают, когда возвращающийся эхосигнал достигает преобразователя. Приемник также должен обеспечивать четкую видимость на экране близкорасположенных целей, разделяя для этого электрические импульсы.
Экран с высоким разрешением и контрастностью
Экран должен иметь высокое разрешение, а также обладать высокой контрастностью. Это позволяет разглядеть на экране дугообразные эхосигналы и различные мелкие объекты, расположенные под водой.
Все части системы должны быть спроектированы для совместной работы при любых погодных условиях и при любых температурах.
Рабочая частота сонаров
Для большинства случаев как в пресной так и соленой воде частота 192 кГц дает лучшие результаты. На этой частоте лучше видны мелкие детали, с ней сонар лучше работает на мелководье и в движении, на экране получается меньше «шума» и нежелательных эхосигналов. На частоте 192 кГц достигается лучшее разрешение.
Но в определенных ситуациях лучше использовать частоту 50 кГц. Так, например, излучение сонара, работающего на частоте 50 кГц (при тех же условиях и при той же мощности), способно проникать на большую глубину, чем излучение на частоте 192кГц. Это связано со способностью воды поглощать звуковую энергию, имеющую разные частоты. Коэффициент поглощения для высоких частот больше, чем для низких. Поэтому частота 50 кГц используется в основном на больших глубинах. Угол расходимости звуковых волн при использовании частоты 50 кГц больше, чем у излучателей, работающих на частоте 192 кГц. Широкий угол обзора полезен при движении судна на мелководье, имеющем большое количество подводных скал и рифов.
192 kHz | 50 kHz |
---|---|
мелководье | большие глубины |
узкий угол излучения | узкий угол излучения |
лучшее разрешение и разделение объектов | меньшее разрешение |
меньшая подверженность шумам | больше шумовых помех |
Преобразователи
Преобразователь является «антенной» сонара. Звуковые волны уходят от преобразователя и, распространяясь в воде, достигают какого-либо препятствия и затем, отражаясь, возвращаются обратно к преобразователю. Преобразователь выполняет две функции: преобразование электрической энергии в звуковую (излучатель) и обратно — звуковой в электрическую (приемник). Когда отраженная звуковая волна попадает на преобразователь, то он превращает ее в электрический сигнал, который поступает в приемно-усилительный блок сонара.
Каждый преобразователь может работать только на одной определенной частоте и эта частота должна совпадать с частотой, на которой работают передатчик и приемник сонара. Кроме того, преобразователь должен быть рассчитан на работу с той мощностью, которая развивается передатчиком, и при этом он должен преобразовывать в звуковую энергию максимальную часть поступающей в него электрической энергии. В то же время преобразователь должен быть достаточно чувствительным, чтобы регистрировать очень слабые возвращающиеся эхосигналы. Все это должно иметь место для одной определенной частоты (192 или 50кГц), в то время как эхосигналы других частот должны отфильтровываться.
Угол излучения преобразователя
Звуковые волны распространяются от преобразователя (излучателя-приемника) в определенном направлении. Когда звуковой импульс удаляется от преобразователя, то, чем больше становится расстояние, тем большую площадь охватывает этот импульс. Если изобразить распространение звуковых волн, то получится конус, вследствие чего появился термин «угол конуса», характеризующий расходимость звукового излучения. По оси конуса мощность звуковых волн максимальна, а по мере удаления от оси она постепенно уменьшается до нуля.
Рис. 2. Сигнал сонара, посланный с лодки
Чтобы определить значение величины угла конуса для определенного преобразователя, необходимо сначала измерить мощность излучения по оси конуса, а затем сравнить его со значениями, полученными в разных точках при удалении от оси. Далее нужно найти ту точку, в которой мощность излучения будет равна половине максимального значения (-3 db). Угол между линией, проведенной из вершины конуса через точку половинного значения мощности с одной стороны от оси и аналогичной линией с другой стороны оси, и будет искомым углом конуса.
Преобразователи с рабочей частотой 192 кГц выпускаются как с узким углом конуса, так и с широким. Преобразователи с широким углом конуса следует применять в большинстве случаев на пресноводных водоемах. В то время как преобразователи с узким углом следует применять во всех случаях рыбалки на море. Излучатели с рабочей частотой 50 кГц обычно имеют углы конуса в диапазоне от 30 до 45 градусов.
Угол эффективного конуса — это область внутри конуса излучения, эхосигналы из которой видны на экране эхолота. Увеличение уровня чувствительности увеличивает эффективный угол, позволяя видеть объекты, которые находятся гораздо дальше по сторонам.
Состояние воды и дна
На работу сонара оказывает влияние то, в какой воде он используется. В чистой пресной воде звуковые волны распространяются хорошо, а вот в соленой воде звук поглощается сильнее, к тому же он рассеивается на многочисленных взвешенных в морской воде частицах. Рассеиванию сигналов сонара способствуют содержащиеся в морской воде микроорганизмы, такие как мелкие водоросли и планктон. В пресной воде тоже есть течения и микроорганизмы, но их влияние на работу сонара значительно меньше.
Грязь, песок и водная растительность на дне сильно поглощают сигналы сонара, ослабляя тем самым отраженный сигнал, который формирует на экране линию дна. Камни, сланцы, кораллы и другие твердые объекты хорошо отражают сигналы сонара. Это различие заметно на экране сонара: мягкое дно, например, илистое, дает на экране тонкую линию. Твердое каменистое дно дает на экране широкую линию.
Применение сонара
Сонар имеет множество применений. Подводные лодки используют сонар для обнаружения других судов. Технологию применяют для измерения глубин (эхолот). Эхолот измеряет время, необходимое для звукового импульса, чтобы достичь дна водоема и вернуться обратно. Рыболовные суда используют эхолот или гидролокатор для поиска стай рыб.
Рис. 3. Внешний вид эхолота
Океанографы используют сонар, чтобы отобразить контуры дна водоема.
Сонары также используются при поиске нефти на суше. Это помогает определить места бурения, которые, скорее всего, содержат природные ресурсы (сейсморазведка).
В медицине используется особый вид сонара — УЗИ (ультразвуковое исследование) или эхоскопия. Звуковые волны разной частоты производят различное эхо при отражении от разных органов тела. Врачи научились использовать эти сигналы, чтобы определять заболевания или контролировать развитие ребенка в утробе матери.
Звуковые волны очень высокой частоты используют в медицине и промышленности для чистки поверхностей от мельчайших инородных частиц.