- Эхолот своими руками смартфон
- Мини-эхолот
- Эхолот для смартфона на «Андроиде». Беспроводной датчик эхолота для смартфона
- Что представляет собой эхолот для смартфона?
- Принцип работы устройства
- Система энергоснабжения
- Основные характеристики датчика
- Модель Deeper Smart Sonar
- Модель Deeper Smart Fishfinder
- Модель FishHunter Directional 3D
- Как выбрать подходящую модель?
- Нюансы эксплуатации эхолотов для смартфона на «Андроиде»
- Заключение
Эхолот своими руками смартфон
Евросамоделки — только самые лучшие самоделки рунета! Как сделать самому, мастер-классы, фото, чертежи, инструкции, книги, видео.
Cамодельный мини-эхолот на микроконтроллере Atmel ATMega8L
и
ЖКИ от мобильного телефона nokia3310
Представляю вашему вниманию авторскую разработку – самодельный мини-эхолот на микроконтроллере Atmel ATMega8L и ЖКИ от мобильного телефона nokia3310. Устройство рассчитано для повторения радиолюбителем средней квалификации, но, я думаю, конструкцию может повторить каждый желающий. Материал я старался изложить так, чтобы читателям в доступной форме дать побольше полезной информации по теме. Надеюсь, что повторение конструкции принесет Вам много удовольствия и пользы.
Буду рад ответить на ваши вопросы/пожелания/замечания и помочь в повторении конструкции.
С уважением, Alex
Эхолот, сонар (sonar) — сокращение от SOund NAvigation and Ranging. Эхолот известен где-то с 40-х годов, технология была разработана во время Второй мировой войны для отслеживания вражеских подводных лодок. В 1957 году компания Lowrance выпустила первый в мире эхолот на транзисторах для спортивной рыбной ловли.
Эхолот состоит из таких основных функциональных блоков: микроконтроллер, передатчик, датчик-излучатель, приемник и дисплей. Процесс обнаружения дна (или рыбы) в упрощенном виде выглядит следующим образом: передатчик выдает электрический импульс, датчик-излучатель преобразует его в ультразвуковую волну и посылает в воду (частота этой ультразвуковой волны такова, что она не ощущается ни человеком, ни рыбой). Звуковая волна отражается от объекта (дно, рыба, другие объекты) и возвращается к датчику, который преобразует его в электрический сигнал (см. рисунок ниже).
Приемник усиливает этот возвращенный сигнал и посылает его в микропроцессор. Микропроцессор обрабатывает принятый с датчика сигнал и посылает его на дисплей, где мы уже видим изображение объектов и рельефа дна в удобном для нас виде.
На что следует обратить внимание: рельеф дна эхолот рисует только в движении. Это утверждение вытекает из принципа действия эхолота. Тоесть, если лодка неподвижна, то и информация о рельефе дна неизменна, и последовательность значений будет складываться из одинаковых, абсолютно идентичных значений. На экране при этом будет рисоваться прямая линия.
Первый вопрос, который, я уверен, возникнет у читателей «Почему использован такой маленький дисплей?» Поэтому я сразу на него отвечу: этот «мини-эхолотик» разрабатывался по просьбе знакомого из того, что оказалось под рукой. А этими подручными средствами оказались ATMega8L, дисплей от nokia3310 и какой-то излучатель с обозначением f=200kHz. Еще Вы, наверное, спросите возможно ли переделать программу/схему под другой, больший дисплей? Да. Теоретически это возможно.
От эхолотов, описанных в [1, 2, 3] моя конструкция отличается применением графического ЖК дисплея, что дает устройству преимущества в отображении полезной информации.
Вся конструкция собрана в корпусе «Z14». Питание обеспечивается от аккумулятора 9В GP17R9H. Максимальный потребляемый ток не более 30 мА (в авторском варианте 23мА).
Теперь о возможностях эхолота. Рабочая частота 200 кГц и настраивается под конкретный имеющийся излучатель. Программно реализована возможность измерять глубину до 99,9 метров. Но скажу сразу: максимальная глубина, которую сможет «видеть» эхолот, в большой степени будет зависеть от параметров примененного излучателя. Моя конструкция на данное время тестировалась только на водоеме с максимальной глубиной около 4 м. Прибор показал отличные результаты. По мере возможности постараюсь протестировать работу эхолота на более больших глубинах, о чем будет сообщено читателям.
Итак, перейдем к схеме. Схема мини-эхолота показана на рисунке ниже:
Основные функциональные блоки эхолота: схема управления (тоесть микроконтроллер ATMega8L), передатчик, излучатель, приемник, дисплей, клавиатура, схема зарядки аккумуляторной батареи.
Работает эхолот следующим образом: микроконтроллер на выводе РВ7 формирует управляющий сигнал (прямоугольные импульсы лог. «0») длительностью примерно 40 мкс. Этот сигнал запускает на указанное время задающий генератор с рабочей частотой 400 кГц на микросхеме IC4. Далее сигнал подается на микросхему IC5, где частота сигнала делится на 2. Сигнал с IC5 подается на буферный каскад на микросхеме IC6 и далее на ключи Q3 и Q4. Далее сигнал со вторичной обмотки трансформатора Т1 подается на пьезокерамический датчик-излучатель LS2, который посылает ультразвуковые посылки во внешнюю среду.
Отраженный от дна/препятствия сигнал принимается датчиком-излучателем и подается на вход приемника, который собран на микросхеме SA614AD в типовом включении (см. Datasheet на SA614AD). Диодная сборка BAV99 на входе приемника ограничивает входное напряжение приемника в момент работы передатчика.
Сигнал с приемника подается на компаратор на микросхеме LM2903, чувствительность которого регулируется микроконтроллером.
Далее сигнал обрабатывается в микроконтроллере и отображается в нужном виде на графическом ЖК дисплее 84х48 точек.
Трансформатор Т1 передатчика намотан на сердечнике К16*8*6 из феррита M1000НМ. Первична обмотка наматывается в 2 провода и содержит 2х14 витков, вторичная – 150 витков провода ПЭВ-2 0,21мм. Первой мотается вторичная обмотка. Половины первичной обмотки должны быть «растянуты» по всей длине сердечника. Обмотки необходимо изолировать друг от друга слоем лакоткани или трансформаторной бумаги.
Теперь самая интересная и проблемная часть: датчик-излучатель. У меня эта проблема была решена изначально: у меня уже был готовый излучатель. Как быть Вам?
Вариант 1: приобрести готовый датчик.
Вариант 2: изготовить самому из пьезокерамики ЦТС-19.
При прошивке микроконтроллера ATMega8L fuse bits выставить согласно картинке ниже :
Полная информация по изготовлению, настройке, прошивке и руководству по использованию мини-эхолота
смотрите в прилагаемом архиве!
Мини-эхолот
Представляю вашему вниманию свою разработку – мини-эхолот на микроконтроллере Atmel ATMega8L и ЖКИ от мобильного телефона nokia3310. Устройство рассчитано для повторения радиолюбителем средней квалификации, но, я думаю, конструкцию сможет повторить каждый желающий. Надеюсь, что повторение этой конструкции принесет Вам много удовольствия и пользы.
Первый вопрос, который, я уверен, возникнет у читателей «Почему использован такой маленький дисплей?» Поэтому я сразу на него отвечу: этот «мини-эхолотик» разрабатывался по просьбе знакомого из того, что оказалось под рукой. А этими подручными средствами оказались ATMega8L, дисплей от nokia3310 и какой-то излучатель с обозначением f=200kHz. Еще вы, наверное, спросите возможно ли переделать программу/схему под другой, больший дисплей? Да. Теоретически это возможно.
От эхолотов, описанных в [1, 2, 3] моя конструкция отличается применением графического ЖК дисплея, что дает устройству преимущества в отображении полезной информации.
Вся конструкция собрана в корпусе «Z14» ( http://www.kradex.com.pl/sklep/328-z14.html ). Питание обеспечивается от аккумулятора 9В GP17R9H. Максимальный потребляемый ток не более 30 мА.
Теперь о возможностях эхолота. Рабочая частота 200 кГц, настраивается под конкретный имеющийся излучатель. Программно реализована возможность измерять глубину до 99,9 метров. Но скажу сразу: максимальная глубина, которую сможет «видеть» эхолот, в большой степени будет зависеть от параметров примененного излучателя. Изготовленная мной конструкция на данное время тестировалась только на водоеме с максимальной глубиной около 4м. Прибор показал отличные результаты. По мере возможности я постараюсь протестировать работу эхолота на больших глубинах и привести результаты испытаний.
Итак, перейдем к схеме. Схема мини-эхолота показана на рисунке (по клику открывается в большом размере 2222×1645 пикселей, рекомендую для работы со схемой сохранить ее на диск).
Основные функциональные блоки эхолота: схема управления (тоесть микроконтроллер ATMega8L), передатчик, излучатель, приемник, дисплей, клавиатура, схема зарядки аккумуляторной батареи.
Работает эхолот следующим образом: микроконтроллер на выводе РВ7 формирует управляющий сигнал (прямоугольные импульсы лог. «0») длительностью примерно 40 мкс. Этот сигнал запускает на указанное время задающий генератор с рабочей частотой 400 кГц на микросхеме IC1. Далее сигнал подается на микросхему IC2, где частота сигнала делится на 2. Сигнал с IC2 подается на буферный каскад на микросхеме IC3 и далее на ключи Q1 и Q2. Далее сигнал со вторичной обмотки трансформатора Т1 подается на пьезокерамический датчик-излучатель LS1, который посылает ультразвуковые посылки во внешнюю среду.
Отраженный от дна/препятствия сигнал принимается датчиком-излучателем и подается на вход приемника, который собран на микросхеме SA614AD в типовом включении (см. Datasheet на SA614AD). Диодная сборка BAV99 на входе приемника ограничивает входное напряжение приемника в момент работы передатчика.
Сигнал с приемника подается на компаратор на микросхеме LM2903, чувствительность которого регулируется микроконтроллером.
Далее сигнал обрабатывается в микроконтроллере и отображается в нужном виде на графическом ЖК дисплее 84х48 точек.
Трансформатор Т1 передатчика намотан на сердечнике К16×8×6 из феррита M1000НМ. Первичная обмотка наматывается в 2 провода и содержит 2×14 витков, вторичная – 150 витков провода ПЭВ-2 0,21мм. Сначала наматывается вторичная обмотка. Половины первичной обмотки должны быть «растянуты» по всей длине сердечника. Обмотки необходимо изолировать друг от друга слоем лакоткани или трансформаторной бумаги.
Теперь самая интересная и проблемная часть: датчик-излучатель. У меня эта проблема была решена изначально: у меня уже был готовый излучатель. Как быть Вам? Вариантов 2:
- Приобрести готовый датчик.
- Изготовить самому из пьезокерамики ЦТС-19 по технологии, описанной в 3 см. раздел «ссылки».
Вот несколько фотографий (по клику увеличиваются):
Проект еще некоторое время будет в разработке, и если к нему будет проявлен интерес, то его можно будет дополнить пожеланиями/замечаниями читателей. Буду рад ответить на ваши вопросы/пожелания/замечания и помочь в повторении конструкции.
Эхолот для смартфона на «Андроиде». Беспроводной датчик эхолота для смартфона
Процесс рыбной ловли становится все технологичнее и эффективнее. Этому способствует появление новых устройств, которые расширяют возможности рыбаков. Эхолот является одним из самых распространенных гаджетов, используемых в данной сфере. Чувствительные датчики сканируют подводное пространство, предоставляя пользователю нужные сведения через экран. Сегодня все большую популярность завоевывает эхолот для смартфона на «Андроиде», рабочий процесс которого требует только подключения датчика. Вся фиксирующаяся информация выводится на мобильное устройство без дополнительных электронных приспособлений.
Что представляет собой эхолот для смартфона?
Это разновидность портативных сонаров-датчиков, которые могут крепиться к леске или специальной веревке. Традиционное исполнение устройства – форма шара, в который интегрирован трансдьюсер. Использовать эхолот со смартфоном можно только с берега, поскольку на лодке, особенно в процессе движения, невозможно будет обеспечить его надежную фиксацию. Существуют модели для операционных систем iOS и «Андроид». В данном случае рассматривается второй вариант, однако все чаще изготовители предусматривают поддержку обеих систем.
Важно подчеркнуть и отсутствие проводов в системе коммуникации. Если стационарные транцевые модели имеют кабельное соединение с дисплеем, то эхолот, работающий со смартфоном, передает сигнал по каналам Bluetooth или Wi-Fi. Существуют и модификации с радиомодулями.
Принцип работы устройства
Несмотря на существенную разницу между портативными беспроводными и стационарными моделями, все эхолоты работают на основе излучения импульсов, которые обрабатываются и предоставляются пользователю в удобном виде. Тот же смартфон с помощью специального приложения графически отразит рельеф дна, покажет глубину и активность рыбы – конкретный набор сведений зависит от модели. Главным средством эхолокации является вышеупомянутый трансдьюсер. Это датчик-излучатель, посылающий сигналы к поверхности дна и принимающий отражаемые волны. В процессе работы эхолот со смартфоном могут менять параметры взаимодействия в зависимости от условий. В частности, пользователь изначально сам может настроить свойства коммуникации, но высокотехнологичные модели способны автоматически корректировать, к примеру, частоту отправки импульсов. После того как информация появилась на экране смартфона, пользователь принимает те или иные решения по изменению тактики ловли. Подобные устройства позволяют искать наиболее благоприятные места для рыбалки.
Система энергоснабжения
Отсутствие проводов обуславливает один из главных недостатков подобных сонаров. Дело в том, что рыбалка – это длительный процесс, а автономия для беспроводной электроники всегда ограничивается несколькими часами. Датчики оснащаются аккумуляторами, средняя емкость которых составляет 500-1000 мАч. Хотя в режиме ожидания устройство может сохранять потенциальную готовность к работе в течение нескольких суток, активный формат эксплуатации расходует энергию за 8-10 часов. Это касается моделей с аккумуляторами на 700-800 мАч. Речь идет именно об усредненных показателях, поскольку на интенсивность сокращения объема батареи будут влиять и погодные условия. Например, зимний эхолот для смартфона расходует на 15-20% энергии больше, что следует учитывать. Некоторые производители также предусматривают несколько аккумуляторов в одном комплекте. Причем в зависимости от формата исполнения батареи может допускаться и возможность его подзарядки от автомобильного прикуривателя. В этом случае можно обеспечить практически безостановочный процесс сканирования, заряжая и меняя элементы питания.
Основные характеристики датчика
Эффективность работы устройства в первую очередь определяется его мощностью. У портативных сонаров она редко превышает 300 Вт. Модели с таким потенциалом оптимально подойдут для обычной ловли с берега при дальности заброса порядка 30-40 м. Мощность влияет на глубину обнаружения, которая может достигать от нескольких десятков до сотен метров – в диапазонах 40-500 м работает большинство моделей. На дальность излучения повлияет и частота. Чем она ниже, тем выше радиус действия. К примеру, 50 кГц обеспечат те самые 500 м. Но важно учитывать, что на функцию беспроводного датчика эхолота для смартфона повлияют и характеристики воды. Так, в условиях повышенной минерализации глубина мониторинга может сократиться вдвое. При этом не стоит ориентироваться исключительно на мощность с частотой. Важен и угол сканирования, который в среднем варьируется от 15° до 45°. Это величина охвата подводного пространства – соответственно, от узкого поля к широкому.
Модель Deeper Smart Sonar
Одна из лучших моделей портативных эхолокаторов в сегменте от известного эстонского производителя Deeper. К особенностям аппарата относится наличие двух точек излучения – трансдьюсеры с частотами 90 и 290 кГц охватывают углы на 55° до 15°. Это значит, что датчик эхолота для смартфона будет отражать на экране рыбу с высокой детализацией. Функциональность модели тоже заслуживает внимания. Устройство имеет GPS-модуль, поэтому данные сканирования могут накладываться на реальную картографическую схему в специальном приложении. Данная возможность позволяет фиксировать информацию о посещенных объектах.
Высокая мощность датчика негативно отразилась на автономности. Если нужен зимний эхолот для смартфона, то придется рассчитывать не более чем на 5 ч работы на одном заряде. Причем восполняется объем аккумулятора не менее 2 ч. К минусам этого предложения можно отнести и высокую стоимость, которая составляет порядка 20 тыс. руб.
Модель Deeper Smart Fishfinder
Модификация от того же производителя, но с более скромными возможностями. Распространение сигнала достигает 40 м, а высокая точность сканирования поддерживается на глубинах порядка 50 м. При этом аппарат тоже имеет два луча, но с меньшими диапазонами. Унаследовала эта версия и недостаток автономности – аккумулятор способен функционировать на протяжении 4 ч. Что касается сильных сторон, то они отражаются в качественном мониторинге с высокой степенью детализации и наличии лунного календаря. В среднем цена эхолота для смартфона на «Андроиде» этой модификации составляет 10-11 тыс. То есть это бюджетный вариант предыдущего устройства с понятными ограничениями в технико-эксплуатационных качествах.
Модель FishHunter Directional 3D
Высокотехнологичная модель портативного эхолота, которая имеет пять трансдьюсеров. Частотный диапазон простирается от 381 до 675 кГц, что дает возможность точно отражать положение рыбы. Впрочем, глубина исследования все равно ограничивает этот эхолот для смартфона на «Андроиде» до 55 м. Зато у аппарата также предусмотрен GPS-модуль, с помощью которого можно формировать подводную карту объекта.
К дополнительному функционалу модели стоит отнести подсказки для рыболова. Так, в процессе сканирования устройство сигнализирует о том, в каком месте лучше всего забросить крючок. Что касается приставки 3D, то она указывает на возможность трехмерного моделирования карты с выделением текстуры рельефа. Подобным опционалом прежде обеспечивались только стационарные дорогостоящие модели, но цена эхолота для смартфона на «Андроид» от компании FishHunter вполне приемлема для своего класса – в среднем 21 тыс.
Как выбрать подходящую модель?
Учитывать главным образом следует основные эксплуатационные качества – частоту излучения, глубину сканирования и емкость аккумулятора. Далее можно переходить к дополнительным функциям. Если возможность 3D-картографии в большей мере является эргономической опцией, то, к примеру, GPS-приемник можно отнести к полезным практическим инструментам. С его помощью рыбак сможет составлять полноценные карты, указывая посещенные места и соответствующие комментарии к ним. В плане выбора по качеству лучше ориентироваться на крупных изготовителей. Приобретать эхолот для смартфона из Китая по ценам 5-7 тыс. нежелательно, поскольку даже при широкой функциональности они едва ли обеспечат высокую точность исследования дна. Лишь в редких случаях такая продукция подтверждает высокие изначально заявленные параметры на практике применения. Также следует учитывать наличие средств внешней защиты – чувствительный элемент должен иметь как минимум водонепроницаемую оболочку и покрытие, оберегающее от механических воздействий.
Нюансы эксплуатации эхолотов для смартфона на «Андроиде»
На первом этапе применения следует наладить синхронизацию между мобильным устройством и датчиком. Специальные приложения от самих изготовителей эхолокаторов помогают автоматически выполнять эту процедуру. Далее уже на месте эксплуатации следует зафиксировать смартфон. Поскольку он будет мешать в процессе ловли, будет не лишним предусмотреть специальный держатель и закрепить на нем корпус. Некоторые комплекты с датчиками включают подобные приспособления. После этого и сам эхолот для смартфона на «Андроиде» должен быть надежно зафиксирован на леске или отдельно забрасываемой веревке. Но важно не перепутать его направление – луч на рабочей поверхности датчика должен ориентироваться вниз.
Заключение
Использование портативных средств мониторинга дна, безусловно, является удобным способом получения нужной информации для рыболова. Но их рабочие качества существенно уступают стационарным аналогам с собственными дисплеями. Особенно эта разница видна на примерах эхолотов для смартфона из Китая с ценниками не выше 8-10 тыс. Как правило, это маломощные модели с низкой эффективностью. Но чем в этом случае оправдывается применение таких датчиков кроме эргономики? Все же подобные гаджеты могут стать полезными, если планируется их применять на небольших глубинах при забросах с берега. Но для выхода в открытые воды на катере, к примеру, в такой оснастке просто не будет смысла.