Сигнал звукового эхолота, посланный с аппарата космического корабля, находящегося на высоте 1 км от поверхности Венеры, отражен от нее через 8 с. С какой скоростью распространяется звук в атмосфере Венеры? ПОЖАЛУЙСТА, ПОМОГИТЕ. решить в виде » задачи».
Ответы и объяснения 1
H=v*t/2 H — высота=1000 м v = скорость t = время туда и назад v=2*H/t v=2*1000/8=250 м/с
Знаете ответ? Поделитесь им!
Как написать хороший ответ?
Чтобы добавить хороший ответ необходимо:
Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
Писать без грамматических, орфографических и пунктуационных ошибок.
Этого делать не стоит:
Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
Использовать мат — это неуважительно по отношению к пользователям;
Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Физика.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!
Физика — область естествознания: естественная наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении.
Эхолот спускаемого аппарата космического корабля
Издательство «Знание» Москва 1985
ББК 39.62
П58
Попов Е. И.
П 58 Спускаемые аппараты. — М: Знание, 1985. — 64 с., ил. — (Новое в жизни, науке, технике. Сер. «Космонавтика, астрономия»; № 4). 11 к.
Создание спускаемых аппаратов ознаменовало собой новый этап в развитии космонавтики, связанный с началом пилотируемых полетов в космос и существенным прогрессом в космических исследованиях далеких тел Солнечной системы. Об этих аппаратах, их конструкции, системах и назначении и рассказывается в брошюре.
Брошюра рассчитана на широкий круг читателей, интересующихся современными проблемами космической техники.
3607000000
ББК 39.62
6Т6
Издательство «Знание», 1985 г.
ВВЕДЕНИЕ
НАЗНАЧЕНИЕ СПУСКАЕМОГО АППАРАТА
ТОРМОЖЕНИЕ В АТМОСФЕРЕ
АППАРАТЫ ДЛЯ СПУСКА В АТМОСФЕРЕ
Посмотрим на существующие и уже применявшиеся спускаемые аппараты с точки зрения распределения тепловых потоков. Кинетическая энергия спускаемого аппарата хотя и очень большая, но легко подсчитывается. Высвобождающаяся при торможении спускаемого аппарата в атмосфере энергия только в небольшой части (1-2%) идет на его нагрев, большая же часть этой энергии нагревает окружающую воздушную среду и рассеивается в атмосфере. Практически вот на эти 1-2% от располагаемой спускаемым аппаратом энергии и надо рассчитывать создаваемую теплозащиту.
Вообще говоря, в космонавтике энергия расходуется расточительно. При запуске космического аппарата только 1-2% энергии топлива, сгоравшего в двигательной установке, идет на увеличение кинетической энергии космического аппарата. Остальная расходуется на потери при нагреве газов и истечении их в атмосферу, на перемещение и увеличение кинетической энергии первых ступеней ракеты-носителя, на повышение потенциальной энергии космического аппарата и т. д. (Видимо, эти проценты в природе часто встречаются. Даже, как показал академик И. В. Петрянов-Соколов, КПД в переработке минералов на Земле составляет только 1-2%, но эти совпадения, наверное, тема другого разговора.)
От угла входа в атмосферу зависит как продолжительность воздействия теплового потока, так и величина лобового сопротивления. При больших углах входа сопротивление настолько резко возрастает, что величина перегрузки достигает несколько сот g. Это было характерно для межпланетных станций «Венера» первого поколения (до «Венеры-8» включительно). Углы входа в атмосферу у них достигали 62-65°, а величины перегрузки при этом были до 450 g. Это значит, каждый прибор, каждый элемент спускаемого аппарата становился в 450 раз тяжелее и во столько же раз больше давил на опору, где был закреплен, чем в момент установки в спускаемый аппарат в сборочном цехе.
Длительное время космический аппарат «Венера» находится в условиях невесомости на межпланетной орбите от Земли до Венеры, когда в течение четырех месяцев спускаемый аппарат не испытывает силовых нагружений. И только при встрече с атмосферой Венеры внезапно, вдруг на корпус и оболочку спускаемого аппарата наваливается огромная сила — сила сопротивления атмосферы, стремящаяся, подобно мощному прессу, смять спускаемый аппарат. При этом он подвергается натиску одновременно двух воздействий: силы сопротивления атмосферы и мощного потока тепловой энергии. Подобное происходит с любым спускаемым аппаратом, входящим как в состав межпланетной станции, так и космического корабля при возвращении космонавтов на Землю.
Лобовые наружные слои теплозащиты сублимируют, т. е. испаряются, и потоком воздуха уносятся, создавая светящийся след в атмосфере. Высокая температура в ударной волне ионизирует молекулы воздуха в атмосфере — возникает плазма. Плазменное покрывало охватывает большую часть спускаемого аппарата и как экраном закрывает несущийся в атмосфере спускаемый аппарат и тем самым лишает связи с космонавтами или с радиокомплексом автоматического аппарата при посадке. Причем в земных условиях ионизация образуется, как правило, на высотах 120-15 км при максимуме в интервале 80-40 км.
Формы спускаемых аппаратов. Прежде всего отметим, что спускаемые аппараты, предназначенные для планет, имеющих атмосферу, могут создаваться либо для спуска без управления — по баллистической траектории, либо для спуска с системой управления движением, способной обеспечивать совершение маневра в атмосфере. Естественно, и более совершенные спускаемые аппараты, снабженные системой управления, могут совершать также спуск по баллистической траектории.
Первые спускаемые аппараты, примененные для искусственных спутников Земли, выполнялись в форме шара. Это спускаемые аппараты кораблей-спутников, космических кораблей «Восток» и «Восход», а также биоспутников. Их спуск проходил по баллистической траектории, ничем не отличаясь от природных «спускаемых аппаратов» — метеоритов. Форма шара самая простая и широко распространена в природе. Это форма звезд, планет, небольших капелек воды и т. д.
Шаровая конструкция, кроме лобового сопротивления, не подвержена действию никаких других сил, не считая силы притяжения. Аэродинамики говорят — шар обладает нулевым качеством, т. е. подъемная сила при обтекании шара атмосферой равна нулю. Для шаровой конструкции величина перегрузки завесит от скорости полета и угла входа в атмосферу. Для искусственного спутника Земли, у которого скорость движения по орбите несколько менее 8 км/с, угол входа должен быть небольшим, порядка одного или нескольких градусов, с тем чтобы перегрузки не превышали 10 g, что очень важно для спуска с орбиты спускаемого аппарата с экипажем.
Что же требуется, чтобы при спуске космонавтов с орбиты имелись комфортабельные условия, т. е. чтобы торможение происходило с ускорением земной тяжести (т..е. почти 10 м/с 2 )?
Во-первых, тормозной путь при этом должен быть длиной 3200 км. Во-вторых, если бы ничего не мешало, т. е. не считать атмосферу, то пришлось бы 800 с спускаться при включенном двигателе. А в земных условиях воздушная оболочка так плавно затормозить при баллистическом спуске не может, и торможение происходит более резким, с большими перегрузками.
Иначе говоря, для уменьшения величины перегрузки необходимо осуществлять спуск не по баллистической траектории, а с использованием подъемной силы, В этом случае необходимо применять спускаемый аппарат, обладающий аэродинамическим качеством. Шар, как уже говорилось, аэродинамическим качеством не обладает, но уже пластинка, если ее поместить в потоке воздуха наклонно, показывает наличие подъемной силы, В космонавтике использовали такую пластинку (правда, круглую в поперечном сечении и выпуклую в сторону потока), а сзади расположили отсек экипажа — получился спускаемый аппарат в форме фары.
Такая конструкция обладает аэродинамическим качеством до 0,35 или, иначе говоря, в движении при определенном наклоне передней стенки фары возникает подъемная сила, достигающая величины 35% от силы лобового сопротивления. Подъемная сила дает возможность проводить спуск по более пологой траектории, с меньшими перегрузками. Такая форма характерна для спускаемых аппаратов космических кораблей «Союз», «Меркурий», «Джемини» и «Аполлон». Правда, корабль «Меркурий» не мог воспользоваться своей формой для создания подъемной силы. Конструктивное решение корабля не позволяло этого сделать, а спуск аппарата всегда происходил по баллистической траектории.
Что же необходимо создать для осуществления наклона передней стенки фары при обтекании ее потоком воздуха?
Рис. 1. Смещение центра масс спускаемого аппарата: 1 — подъемная сила; 2 — направление полета; ЦМ — центр масс; ЦД — центр давлений; заштриховано место наиболее массивного оборудования
В принципе это можно было сделать с помощью системы ориентации. Правда, расход топлива при этом достигал бы очень больших значений: ведь надо было создать значительные управляющие моменты для компенсации моментов, возникающих под действием аэродинамических сил. И с точки зрения затрат огромных масс топлива этот путь неприемлем.
Более простое решение — смещение центра масс относительно оси симметрии. У фары в качестве основной несущей поверхности используется передняя стенка — днище, имеющее форму сегмента сферы относительно небольшой кривизны. Боковая поверхность спускаемого аппарата выполняется либо в форме конуса, либо при сочетании конуса и части сферы. Спуск аппарата осуществляется днищем вперед. Поскольку по внешнему виду спускаемый аппарат является телом вращения, то его центр давления (результирующей силы аэродинамического воздействия) находится на оси симметрии. Так что смешенный центр масс располагают между днищем и центром давления.
Такая центровка обеспечивает устойчивое положение спускаемого аппарата в воздушном потоке (днищем вперед), а также несимметричное обтекание спускаемого аппарата. Благодаря последнему появляется подъемная сила, перпендикулярная набегающему потоку (рис.1).
Спуск с орбиты искусственного спутника Земли может успешно осуществляться в широком диапазоне начальных условий с приемлемыми перегрузочными и тепловыми нагрузками как при баллистическом спуске, так и при спуске с использованием аэродинамического качества спускаемого аппарата. При этом широко применяется система управления движением при спуске, основанная на методе управления спускаемым аппаратом путем его программного разворота по углу крена (при постоянном угле атаки), что в процессе полета обеспечивает изменение эффективной силы — проекции подъемной силы на вертикальную плоскость. Такой метод требует достаточно малых управляющих моментов, благодаря так называемой статической нейтральности по углу крена и неизменности картины обтекания воздушным потоком в процессе управления.
Но уже при возвращении космического аппарата после полета к Луне, когда скорость его входа в земную атмосферу близка ко второй космической скорости, проблема спуска усложняется в связи с увеличением перегрузок и повышением напряженности теплового потока. Для успешного решения задачи спуска надо в этом случае очень точно выдерживать «коридор» входа в атмосферу, который определяет границы по углу входа в атмосферу. В случае больших углов возникают большие перегрузки, и наоборот, при очень малых углах атмосфера может не «захватить» спускаемый аппарат вследствие незначительности своего сопротивления его движению. Отметим, что границы коридора входа зависят как от аэродинамических характеристик спускаемого аппарата, так и от того, каким образом используется аэродинамическое качество аппарата на начальном участке погружения в атмосферу. Кроме того, с увеличением скорости полета уменьшается и ширина коридора входа в атмосферу, а это ведет к увеличению точности работы системы навигации и коррекции на подлетном участке траектории.
Для спускаемого аппарата с системой управления движением возвращение с Луны может решаться и иным путем. При достаточно крутом входе в атмосферу, когда угол входа больше 2°, траектория спускаемого аппарата даже при малых постоянных значениях угла атаки и небольшом коэффициенте качества (в пределах 0,2-0,3) содержит восходящие участки, т. е. возможно рикошетирование аппарата. В этом случае допустимо двойное погружение спускаемого аппарата в атмосферу (рис.. 2). При подлете к Земле со второй космической скоростью при угле входа 3° спускаемый аппарат после первого погружения выходит из атмосферы на эллиптическую орбиту и затем вновь входит в атмосферу, но уже на расстоянии 10000 км от точки выхода.
Рис. 2. Двойное погружение в атмосферу: 1 — первый вход в атмосферу; 2 — выход из атмосферы; 3 — второй вход в атмосферу; 4 — посадка; 5 — условная граница атмосферы; 6 — коридор входа
Однако обеспечение точного места посадки при этом затруднительно, поскольку, при отклонении скорости на 0,001 (около 8 м/с) от расчетной приводит к отклонению дальности точки вторичного входа в атмосферу на 300 км, а отклонение угла наклона траектории на 0,1° — к отклонению дальности на 180 км. Чтобы эта неопределенность уменьшилась, траектория должна иметь как можно больший угол наклона в точке вылета из атмосферы. Правда, величина этого угла ограничивается запасом аэродинамического качества спускаемого аппарата, а также допустимым пределом максимальных перегрузок (в ином случае будут более глубокие погружения в атмосферу на первом участке). На промежуточном участке полета управление аппаратом невозможно, и поэтому накопленное отклонение по дальности сможет быть скомпенсировано только на участке второго погружения в атмосферу.
Подчеркнем, что, рассматривая возможности спускаемого аппарата при возвращении с орбиты и с лунных траекторий, мы предусматривали программное управление движением аппарата. Однако при возвращении с орбиты могут возникать и такие ситуации, когда управлять траекторией спуска с помощью аэродинамических сил станет невозможно. Например, если вдруг спускаемый аппарат не удалось сориентировать перед входом в атмосферу или, скажем, подготовить систему управления. В этих ситуациях необходимо осуществлять баллистический спуск по траектории, которая формируется без использования подъемной и боковой аэродинамических сил аппарата.
При этом выбирается траектория, которая обеспечивает значительно меньший разброс мест приземления и позволяет избежать недопустимо больших перегрузок. А большие перегрузки весьма возможны, если спускаемый аппарат, скажем, входит в атмосферу перевернутым на 180°, т. е. когда подъемная сила не выталкивает аппарат вверх, а заставляет погружаться в еще более плотные слои атмосферы и делает спуск более крутым. Однако организовать необходимый баллистический спуск довольно просто — достаточно сообщить аппарату вращение относительно оси, совпадающей с направлением полета. При таком вращении воздействие поперечных аэродинамических сил сводится к минимуму.
Теплозащитное покрытие. Как уже говорилось, почти вся энергия, сообщенная ракетой-носителем космическому аппарату, должна рассеяться в атмосфере при его торможении. Однако определенная часть этой энергии ведет к нагреву спускаемого аппарата при его движении в атмосфере. Без достаточной защиты металлическая его конструкция сгорает при входе в атмосферу и аппарат прекращает свое существование. Тепловая защита должна быть хорошим изолятором тепловой энергии, т. е. обладать малой способностью к теплопередаче и быть жаростойкой. Таким требованиям отвечают отдельные сорта искусственных материалов — пластмасс.
Спускаемый аппарат покрывают теплозащитным экраном, как правило, из этих искусственных материалов, состоящим из нескольких слоев. Причем внешний слой состоит обычно из относительно прочных пластмасс с графитовым наполнением как наиболее тугоплавким материалом, а следующий термоизоляционный слой — чаще всего из пластика со стекловолокнистым наполнением. Для уменьшения массы теплоизоляции, как правило, отдельные се слои делают сотовыми, пористыми, но обладающими достаточно высокой прочностью.
Толщина теплового покрытия зависит от типа спускаемого аппарата и его назначения. Например, у спускаемого аппарата станции «Венера-14» унос теплозащитного покрытия при прохождении атмосферы Венеры был порядка 30-70 мм по толщине защитного экрана. Следовательно, теплозащитное покрытие должно иметь достаточно значительную толщину, чтобы сохранить металлическую конструкцию спускаемого аппарата. А это уже составляет значительный процент массы от допустимой величины для спускаемого аппарата. Так, для спускаемого аппарата корабля «Восток», имевшего массу 2460 кг, масса сферической теплозащиты составляла 800 кг.
Итак, при воздействии большой температуры теплозащитное покрытие, начиная с поверхности, сильно нагревается и затем испаряется, унося тем самым с собой избыточную тепловую энергию от спускаемого аппарата. Для снижения же массы теплозащитного покрытия его максимальная толщина приходится только на места, подверженные наибольшему воздействию теплового потока. У спускаемых аппаратов типа фары это днище, а боковые поверхности, подверженные меньшему нагреву, имеют теплозащиту незначительной толщины. Причем у отдельных спускаемых аппаратов после прохождения наибольшего участка торможения и после прекращения действия тепловых нагрузок массивный теплозащитный экран с лобовой части (с днища) сбрасывается.
Парашютная система. После окончания интенсивного аэродинамического торможения движение спускаемого аппарата становится относительно равномерным. Скорость его снижения для различных конструкций в атмосфере вблизи Земли устанавливается в диапазоне 50 — 150 м/с. Чтобы сохранить спускаемый аппарат и обеспечить безопасность экипажа, скорости при посадке должны быть значительно меньшие. Так, например, скорость при посадке на воду не должна превышать 12— 15 м/с, на сушу (на твердый грунт) — 6-9 м/с. Для сравнения отметим, что спортсмен-парашютист приземляется со скоростью 5-8 м/с. Чтобы уменьшить скорость падения спускаемого аппарата на Землю, и применяют различные парашютные системы.
Масса этих систем также составляет определенную часть массы спускаемого аппарата, и, как правило, при увеличении массы аппарата пропорционально возрастает и масса парашютной системы. Введение парашютной системы в воздушный поток и развертывание купола хотя и не является простой задачей, но она успешно решается в практической космонавтике. При относительно больших скоростях полета введение большого купола основного парашюта приводит к большим нагрузкам, которых материал парашюта может не выдержать. При этом большие нагрузки будут воздействовать и на экипаж аппарата. Конструктивно эта проблема решается с помощью системы парашютов.
Вначале вместе с отстреливаемой крышкой парашютного отсека вытаскивается вытяжной парашют с небольшой рабочей площадью купола. Этот вытяжной парашют вводит в набегающий поток воздуха купол тормозного парашюта. В результате скорость снижения спускаемого аппарата уменьшается почти вдвое, и тогда с помощью тормозного парашюта вводится основной парашют. Причем чаще всего вводится не полный купол основного парашюта, а его часть. При дальнейшем снижении скорости спускаемого аппарата шнур, с помощью которого зарифовывается основной купол, перерезается и тогда уже купол основного парашюта раскрывается полностью.
Купол основного парашюта имеет большую рабочую площадь, что позволяет снизить скорость снижения до величин, безопасных для экипажа и самого спускаемого аппарата. Однако полностью затормозить спускаемый аппарат с помощью только одного такого парашюта принципиально невозможно. Поэтому основной парашют в, зависимости от массы спускаемого аппарата может быть с одним куполом или с несколькими. Иногда вместо каскада тормозного и основного парашютов применяется вначале зарифованый основной парашют, но с уменьшением скорости спуска зарифовка в один или два этапа снимается.
Заключительное торможение удобно осуществлять с использованием пороховых двигателей. Эти двигатели включаются непосредственно перед касанием земной поверхности, и они гасят скорость спуска до 2-4 м/с. Заметим, что спускаемые аппараты американских космических кораблей «Меркурий», «Джемини» и «Аполлон» были оборудованы только парашютной системой и пороховые двигатели мягкой посадки на них не применялись, поскольку эти спускаемые аппараты осуществляли посадку в океане — на воду.
СПУСКАЕМЫЕ АППАРАТЫ ДЛЯ ВОЗВРАЩЕНИЯ ЛУННЫХ «ГЕОЛОГОВ»
Спускаемые аппараты автоматических космических аппаратов «Луна-16, -20 и -24», предназначенные для посадки на Землю после забора лунного грунта, имели форму шара диаметром 0,5 м. Эта форма не требует создания специальной системы ориентации, необходимой для спускаемого аппарата, обладающего аэродинамическим качеством. Спуск в атмосфере происходил по баллистической траектории. Главным здесь было требование ограничения по массе для спускаемого аппарата. Отсутствие же космонавта снимало препятствия, накладываемые большими перегрузками.
Посадочная ступень этих автоматических станций «Луна», представлявшая собой спускаемый аппарат для посадки на Луну, служила и стартовым устройством для космической ракеты «Луна — Земля». Последняя имела в своем составе жидкостный ракетный двигатель со сферическими баками для компонентов топлива, а также приборный отсек с четырьмя штыревыми антеннами и спускаемый аппарат, крепившийся к приборному отсеку стяжными лентами. Приборный отсек служил местом установки приборов системы управления, радиокомплекса, аккумуляторной батареи и бортовой автоматики.
После того как станция «Луна-16» с помощью грунтозаборного устройства провела бурение лунной поверхности, бур с грунтом был вложен внутрь контейнера спускаемого аппарата, после чего контейнер был загерметизирован и по окончании подготовительных операций по проверке готовности система управления по команде включила двигательную установку лунной ракеты, и та стартовала вертикально вверх. По окончании работы двигательной установки ракета имела скорость 2708 м/с, достаточную для преодоления лунного притяжения.
Полет ракеты к Земле проходил по баллистической траектории, для которой не требовалась и не предусматривалась коррекция (полет к Земле длился около 3 сут). За 3 ч до входа в атмосферу Земли спускаемый аппарат с помощью пиротехнических средств отделялся от ракеты. Вход в земную атмосферу совершался со скоростью более 11 км/с.
На этапе аэродинамического торможения спускаемый аппарат под воздействием набегающего воздушного потока разворачивался лобовой частью в направлении движения, и демпфирующее устройство устойчиво удерживало его в этом положении. Далее процесс посадки осуществлялся средствами бортовой автоматики. Вследствие большого угла входа в атмосферу Земли спускаемый аппарат испытывал перегрузку в 350 g, а его теплозащита подвергалась воздействию температуры более 10000 К. По достижении высоты 14,5 км, скорость спускаемого аппарата снижалась до 300 м/с.
В этот момент по команде от датчика перегрузок производился отстрел крышки парашютного отсека и вводился в воздушный поток тормозной парашют. На высоте 11 км по сигналу барометрического датчика тормозной парашют отцеплялся и вводился основной парашют. Посадка осуществлялась на твердый грунт, хотя спускаемый аппарат мог спускаться и на воду. Для повышения плавучести в верхней части спускаемого аппарата после отстрела парашютной крышки были надуты два гибких баллона сжатым воздухом.
Рис 3. Спускаемый аппарат станции «Луна-16» на Земле
Спускаемый аппарат этой лунной станции (рис. 3) представлял собой герметичный металлический шар, наружная поверхность которого имела теплозащитное покрытие, обеспечивавшее сохранение аппарата на участке аэродинамического торможения при входе в атмосферу Земли. Теплозащитное покрытие имело переменную толщину: в лобовой части наибольшую (до 35 мм), а с противоположной стороны — всего несколько миллиметров. Конструктивно спускаемый аппарат состоял из трех отсеков: приборного, парашютного и цилиндрического контейнера для образцов лунного грунта. В приборном отсеке размещались радиопеленгационные передатчики, аккумуляторные батареи, элементы автоматики и программное устройство. В парашютном отсеке находились (в сложенном виде) парашют, четыре антенны пеленгационных передатчиков и два эластичных баллона, используемые после посадки и их наддува для фиксации положения спускаемого аппарата, а также для создания плавучести при посадке на воду.
Этот спускаемый аппарат имел относительно малые размеры, разброс места посадки в заданном районе достигал сотен квадратных километров, и поэтому возникла проблема с поиском аппарата после приземления. В связи с чем установленные в нем пеленгационные передатчики непрерывно передавали сигналы на строго фиксированной частоте, позволяя его легко запеленговать и определить место посадки. Снизу внутри корпуса в лобовой части спускаемого аппарата устанавливался демпфер, позволивший гасить колебания аппарата при прохождении этапа аэродинамического торможения.
СПУСКАЕМЫЙ АППАРАТ КОРАБЛЯ «СОЮЗ»
СПУСКАЕМЫЙ АППАРАТ КОРАБЛЯ «ЗОНД»
СПУСКАЕМЫЕ АППАРАТЫ АМЕРИКАНСКИХ КОРАБЛЕЙ
СПУСКАЕМЫЕ АППАРАТЫ AMС «ВЕНЕРА»
Спускаемые аппараты автоматических космических станций, предназначенных для исследования планеты Венера, отличаются конструктивно от спускаемых аппаратов космических кораблей. Планета Венера обладает достаточно мощной атмосферой: атмосферное давление на поверхности планеты более чем в 90 раз превышает земное. Температура на поверхности равна почти 500°С (порядка 770 К). Это и наложило свой отпечаток на создание спускаемого аппарата для Венеры.
Первые полеты к планете Венера, кроме того, планировались таким образом, чтобы спускаемые аппараты попадали примерно в центр диска планеты Венера, обращенного к Земле. Это условие необходимо было для создания радиосвязи со спускаемым аппаратом, антенна которого с относительно узкой диаграммой направленности практически смотрела в зенит при спуске. Но это же накладывает особые требования на угол входа в атмосферу планеты при подлете к ней станции, они получались около 62-65° относительно местного горизонта.
При скорости входа более 11 км/с данное обстоятельство приводило к большим перегрузкам, доходящим до 450 g. Поэтому приходилось думать о создании прочного корпуса и аппаратуры, способных выдерживать столь сильные перегрузки.
Спускаемые аппараты первых станций, совершивших полеты на Венеру, имели форму, близкую к шару. При этом датчики научных приборов могли размещаться только в верхней части спускаемого аппарата, на срезе, открывающегося после сброса крышки парашютного отсека. Первоначальное незнание точных условий на планете Венера, противоречивые результаты различных наблюдений обусловили создание относительно прочных шарообразных спускаемых аппаратов, способных выдержать лишь до 20 атм. Снаружи они защищались теплозащитной оболочкой значительной толщины.
Для уточнения параметров, свойственных атмосфере Венеры, научные приборы на первых станциях устанавливались только для определения температуры, давления, химического состава атмосферы и ее освещенности, а также высотомер для привязки данных по высоте над поверхностью планеты. К таким первым станциям-разведчикам планеты Венера следует отнести станцию «Венера-4», совершившую полет в 1967 г., «Венеру-5» и «Венеру-6» — в 1969 г., «Венеру-7» — в 1970 г. и «Венеру-8» — в 1972.
В результате изменения взглядов на физические условия, существующие на планете, по мере получения данных со спускаемых аппаратов претерпевала изменения конструкция самих спускаемых аппаратов. Прочность корпуса пришлось увеличить, чтобы он мог выдерживать наружное давление от 10 атм у «Венеры-4» до 120 атм у «Венеры-8». Вследствие этого масса спускаемого аппарата возрастала, и если у первого из них она составляла 383 кг при общей массе станции 1106 кг, то у «Венеры-7» и «Венеры-8» масса спускаемого аппарата составила уже 500 кг при массе станции 1200 кг.
При скорости входа в атмосферу порядка 11 км/с перегрузки достигали 450 g, а температура газа во фронте ударной волны доходила до 11000 К. При таких высоких температурах поверхность спускаемого аппарата даже не горит, а просто испаряется.
Спускаемые аппараты станций «Венера-4» — «Венера-8», по форме близкие к шару, имели диаметр около 1 м. Наружная поверхность шара, особенно нижняя лобовая его часть, снабжалась мощной теплозащитной оболочкой. Последняя задерживала также приток тепла в герметический контейнер с поверхности шара во время движения спускаемого аппарата в атмосфере Венеры.
Спускаемые аппараты отделялись от автоматических космических станций, когда те находились еще за 20 — 40 тыс. км до планеты Венера. Этим маневром старались обезопасить спускаемый аппарат от повреждения при входе в атмосферу. В этом случае соударений между отсеками станции и, как следствие, повреждения спускаемого аппарата не будет. Орбитальный отсек сделал свое дело — доставил спускаемый аппарат к планете и теперь может разрушиться при попадании в атмосферу Венеры, поскольку соответствующим теплозащитным покрытием не обладает.
Однако во время всего полета в течении 4 мес от Земли к Венере орбитальный отсек обеспечивал температурный режим для собственных нужд и для нужд спускаемого аппарата. Перед отделением система терморегулирования орбитального отсека захолаживала спускаемый аппарат, что необходимо было для продления его работоспособности в жарких условиях венерианской атмосферы. Орбитальный отсек обеспечивал также электроэнергией работу различных систем, черпая ее от Солнца с помощью солнечных батарей. С использованием этого отсека определялось положение станции в пространстве и проводилась необходимая коррекция полета для направления спускаемого аппарата в заданную зону попадания в районе планеты Венера.
Но, несмотря на столь важные функции, орбитальный отсек фактически являлся лишь средством для доставки спускаемого аппарата к планете Венера в работоспособном состоянии.
Конструктивно спускаемый аппарат сам состоял из двух изолированных отсеков: нижнего — приборного и верхнего — парашютного. В парашютном отсеке под крышкой, которая сбрасывалась после прохождения участка аэродинамического торможения, были расположены датчики научных приборов, антенны радиокомплекса и высотомера, а также двухкаскадная парашютная система (из тормозного и основного парашютов). Ткань парашютов сохраняла необходимую прочность при температурах до 500°С. Здесь же располагались выносные антенны радиокомплекса для последних двух станций из этой серии.
После интенсивного аэродинамического торможения при достижении скорости порядка 200-250 м/с от барометрических датчиков (при давлении 0,6 атм) формировалась команда на отстрел крышки парашютного отсека и в воздушный поток вводился тормозной парашют площадью 2,2 м 2 . В ходе дальнейшего снижения скорости программно-временное устройство выдавало команду на отделение тормозного парашюта и введение основного.
Площадь основного парашюта у «Венеры-4» составляла 55 м 2 , но после полета этой станции, спускаемый аппарат которой опускался в весьма «негостеприимной» атмосфере почти 1,5 ч, пришлось пересмотреть характеристики основного парашюта. При его вводе на высоте около 70 км работа спускаемого аппарата прекратилась уже на высоте примерно 30-40 км при достижении атмосферного уровня давлением свыше 20 атм. Причем слишком затяжное время спуска привело к сильному разогреву аппаратуры в горячей атмосфере.
Чтобы убыстрить спуск, площадь основного парашюта для спускаемых аппаратов станций «Венера-5» и «Венера-6» была уменьшена до 12 м 2 . В результате скорость спуска увеличилась, а сам он продолжался 51-53 мин. Эти спускаемые аппараты опустились до уровня высот с давлением 27-28 атм., а спуск на парашютах велся уже до высот 36 и 38 км. Достигли поверхности планеты с работающей аппаратурой спускаемые аппараты станций «Венера-7» и «Венера-8».
В нижнем приборном отсеке спускаемого аппарата станций «Венера» первого поколения (рис. 4) размещались бортовой радиопередатчик, программно-временное устройство, блоки автоматики, телеметрическая система, радиовысотомер, аккумуляторная батарея, система терморегулирования и научная аппаратура. В нижней части спускаемого аппарата был установлен специальный механический демпфер, служивший для повышения устойчивости движения спускаемого аппарата в атмосфере Венеры и для уменьшения амплитуды его колебаний. Чем меньше амплитуда, тем меньше боковые перегрузки, которые, суммируясь с осевой перегрузкой, ухудшают воздействие на спускаемый аппарат.
После получения данных о действительных характеристиках атмосферы Венеры конструкторы смогли приступить к проектированию и постройке нового поколения спускаемых аппаратов, предназначенных для обширных исследований физических и химических свойств атмосферы и поверхности этой планеты. Спускаемые аппараты второго поколения были сконструированы для выполнении многих научных задач, в том числе и с целью «осмотра» поверхности планеты. Поэтому на спускаемые аппараты была установлена фототелевизионная аппаратура. Для проведения химического анализа было разработано и размещено на спускаемом аппарате грунтозаборное устройство, причем внутри спускаемого аппарата находился сложный комплекс для проведения химического анализа забранного грунта. На штангах разместили антенны, датчики определения скорости ветра, освещенности и т. д.
Большинство научной аппаратуры необходимо было разместить снаружи спускаемого аппарата, однако если его в таком виде заставить тормозиться в атмосфере, то все выступающие части с научной аппаратурой были бы уничтожены огненным смерчем при аэродинамическом торможении. Поэтому первоначальный спускаемый аппарат назвали посадочным, поверх его надели шар с теплозащитным покрытием и в результате получился новый спускаемый аппарат, но уже значительно больших размеров. Диаметр шара составил 2,4 м, причем состоял он из двух полусфер, разделяющихся при подрыве пиротехнических средств (рис. 5).
Сами станции «Венера» также претерпели измерения. Запуск автоматических межпланетных станций производился более мощной ракетой-носителем, и поэтому масса станций достигала 4,5-5 т. В связи с этим представилась возможность после отделения спускаемого аппарата спасти орбитальный отсек, т. е. саму станцию «Венера», и использовать ее в качестве ретранслятора радиосигналов, идущих от спускаемого аппарата.
Для этого надо было переводить ее с траектории попадания в планету на пролетную траекторию. Следовательно, заранее до полета к планете следовало отделять спускаемый аппарат, предварительно охладив его для повышения живучести в горячем дыхании атмосферы, а затем с помощью двигательной установки уже переводить станцию на траекторию пролета. Как правило, разделение спускаемого аппарата и станции проводят за двое суток до подлета.
Почему двое суток, а не одни или десять и не 27 или 59 ч?
Для спускаемого аппарата чем позже разделение, тем лучше, поскольку он пользуется системой терморегулирования станции и его аппаратура проверяется на работоспособность с помощью систем станции. А для станции необходимо более раннее отделение с целью создания меньшего по энергетике импульса для уверенного перехода с попадающей траектории на траекторию пролета. Компромиссное решение и предопределило разделение за 48 ч, или двое суток, до подлета к планете. После разделения до введения парашютной системы спускаемый аппарат движется «молча», Земля не может его контролировать. Ровно двое суток как раз требуется для того, чтобы сеанс разделения проводился в течение времени, когда наземные радиосредства слежения, находившиеся на территории СССР, обращены в сторону планеты Венера. А сеанс прилета и посадки на планету спускаемого аппарата (который выбирался по времени заранее) тоже должен был приходиться на период радиовидимости с территории нашей страны. Естественно, что эти периоды радиовидимости кратны 24 ч — периоду суточного вращения Земли.
Станция «Венера» после разделения может переводиться на орбиту искусственного спутника Венеры (как это было со станциями «Венера-9» и «Венера-10») или на пролетную траекторию с дальнейшим полетом вокруг Солнца по орбите, находящейся между орбитами Земли и Венеры. Возможность использования станции в качестве ретранслятора позволила значительно уменьшить прочностные характеристики спускаемого аппарата, поскольку отпадали жесткие условия на спуск в центр диска планеты, обращенного к Земле.
Таким образом, стало возможным значительно уменьшить угол входа в атмосферу. Правда, из-за допустимых отклонений траектории от расчетной предельно малые углы входа реализовать нельзя, так как атмосфера в этом случае может и не захватить аппарат. В качестве расчетных для станций «Венера» второго поколения приняты углы входа 20-23°. Максимальные перегрузки при этом достигают уже только 170 g.
Посадку спускаемого аппарата можно стало осуществлять практически в любую точку планеты, даже на обратную ее сторону не видимую с Земли. Ведь теперь радиосигналы со спускаемого аппарата принимались на космический аппарат, пролетавший мимо планеты. Сигналы принимались и ретранслировались им через остронаправленную антенну на Землю, но могли также, записываться на борту станции, а затем уже по мере надобности многократно воспроизводиться и передаваться на Землю.
СПУСКАЕМЫЕ АППАРАТЫ «ПИОНЕР-ВЕНЕРА»
СПУСК В ОТСУТСТВИЕ АТМОСФЕРЫ
СПУСКАЕМЫЕ АППАРАТЫ СТАНЦИЙ «ЛУНА-9», «ЛУНА-13»
До совершения посадки космического аппарата на лунную поверхность о ее свойствах были самые противоречивые сведения. По одним данным лунная поверхность представляла собой скалистые горные пустыни, по другим «моря» и материки Луны считались покрытыми толстым слоем пыли, в которой могли утонуть любые космические аппараты, осмелившиеся опуститься на се поверхность.
Рис. 6. Схема мягкой посадки станции «Луна-9»
Оригинальное решение для осуществления мягкой посадки на Луну предложил С. П. Королев. Вначале полет лунной станции необходимо было затормозить с помощью двигательной установки до скорости нескольких, метров в секунду, а затем автоматическая лунная станция могла сбрасываться с двигательной установки, а на Луне оказывался спускаемый аппарат, упакованный в надутые сжатым газом мягкие и эластичные баллоны (рис. 6). При незначительной массе (около 100 кг) и сравнительно большой опорной поверхности баллонов (порядка 1,5 м 2 ) удельное давление на грунт оказывается незначительным. Система посадки была разработана таким образом, что при любом грунте (будь то твердая скальная поверхность или рыхлый дисперсный грунт) обеспечивалось надежное прилунение станции.
Спускаемым аппаратом для станции «Луна-9» фактически можно назвать автоматическую лунную станцию массой порядка 100 кг. Все остальное либо разрушалось, либо повреждалось при соприкосновении с поверхностью. Корпус спускаемого аппарата шарообразной формы диаметром около 50 см при закрытых лепестках принимал яйцевидную форму. Станция подлетела к Луне со скоростью 2,6 км/с. Система астроориентации разворачивала и фиксировала в определенном направлении станцию таким образом, чтобы сопло двигательной установки было направлено в сторону лунной поверхности.
За 48 с до подлета, когда до Луны оставалось 75 км, по сигналу автономного высотомера от станции отделялись ставшие ненужными два отсека с аппаратурой и включалась тормозная двигательная установка. (Более правильным ее название было корректирующе-тормозная двигательная установка, так как на трассе перелета Земля — Луна она использовалась для проведения коррекции траектории полета к Луне.) Работа двигательной установки контролировалась по программе, заложенной и памяти станции. Двигатель имел возможность регулирования тяги в относительно широком диапазоне.
С момента начала работы двигательной установки производился наддув двух эластичных баллонов, внутри которых находилась автоматическая лунная станция. Баллоны, зажав спускаемый аппарат, прочно соединились друг с другом, образуя большой упругий мяч. Вблизи лунной поверхности двигатель выключался и срез его сопла разворачивался и образовывался из плоской пружинной ленты трубчатый щуп. Соприкасаясь с поверхностью, щуп выдавал сигнал на отстрел спускаемого аппарата с баллонами. При этом практически разрывалась связь со станцией, а отделение происходило за счет силы упругости первоначально прижатых к опоре станции баллонов.
Поверхность, к которой прижимались баллоны, была несколько скошена в сторону с целью отделения автоматической лунной станции не по вертикали, чтобы падение произошло не на двигательную установку, а несколько в сторону. Мяч со станцией совершал несколько прыжков и останавливался. По сигналу, поступающему от программно-временного устройства, связи между баллонами рвались, и они, как два мяча, отскакивали от станции. Спускаемый аппарат с небольшой высоты мягко опускался на поверхность.
Благодаря яйцевидной форме и низкому положению центра масс аппарат мог принять заранее заданное положение. Через 4 мин после посадки программно-временное устройство выдавало команду на размыкание пирозамка, и лепестковые антенны раскрывались, освобождая одновременно и штыревые антенны. Лепестковые антенны на перелете играли роль приемно-передающих антенн, а после раскрытия переключались на работу в качестве передающих антенн, тогда как приемными служили штыревые антенны.
Внутри корпуса спускаемого аппарата была установлена жесткая рама с радиоаппаратурой, электронными программно-временными устройствами и приборами автоматики, телеметрической и научной аппаратурой. Сверху располагался телефотометр, позволявший видеть и передать на Землю панораму окружающей местности. Для бесперебойной работы аппаратуры в лунных условиях поддерживался необходимый температурный режим. Это достигалось устройством наружной теплоизоляции корпуса, а также работой системы терморегулирования. Последняя включала в себя бак с водой, пироклапан, клапан-испаритель, вентилятор и систему трубопроводов.
После посадки на Луну происходил подрыв пироклапана, включалась водяная испарительная система и начинал работать вентилятор, который обеспечивал передачу тепла от прибора к газу. Клапан-испаритель являлся чувствительным элементом системы, регулятором подачи воды и испарителем. Вода поступала к нему из бака под давлением и тем интенсивнее, чем выше была температура клапана. В клапане она испарялась и отнимала тепло от газа, продуваемого через клапан.
Автоматическая космическая станция «Луна-13» по конструкции и массе была близкой к станции «Луна-9», только на ней было установлено дополнительное научное оборудование, а также приборы для непосредственного изучения лунного грунта. Это были механический грунтомср-пенетромстр, позволявший определять механические свойства наружного слоя лунного вещества, и радиационный плотномер для определения плотности наружного слоя лунного грунта. Приборы были смонтированы на механизмах, обеспечивающих вынос приборов, закрепленных на наружном корпусе станции. Механизмы выноса позволяли устанавливать эти приборы на поверхности Луны на расстоянии до 1,5 м от автоматической лунной станции.
После полета станций «Луна-9» и «Луна-13» были получены основные данные о свойствах лунного грунта. С этого времени отпала необходимость конструировать спускаемые аппараты, способные осуществлять посадку и на скальные грунты и на поверхность, покрытую толстым слоем пыли. Все последующие спускаемые аппараты, предназначенные для посадки на Луну, уже использовали иные способы осуществления мягкой посадки. Как правило, стали применяться посадочные устройства с опорами в виде ног. Такое посадочное устройство способно выдерживать и амортизировать соударение станции с грунтом при вертикальных скоростях 6-8 м/с и при горизонтальной составляющей скорости до 3-4 м/с и обеспечивать устойчивость при посадке на склоны— крутизной 15-20°.
Спускаемый аппарат нового поколения советских лунников разрабатывался как посадочная ступень в виде самостоятельного ракетного блока многоцелевого назначения. Этот блок имел жидкостный ракетный двигатель, систему баков с компонентами топлива, приборные отсеки и амортизационные опоры для посадки на поверхность Луны. На посадочной ступени устанавливались также антенны бортового радиокомплекса и исполнительные органы системы ориентации.
В приборных отсеках размещались электронно-вычислительные и гироскопические приборы системы управления и стабилизации, электронные приборы ориентации, радиоприемники и передатчики бортовые радиоизмерительного комплекса, программно-временное устройство, автоматически управляющее работой всех систем и агрегатов, химические аккумуляторные батареи и преобразователи тока, элементы системы терморегулирования, автономные средства измерения высоты, горизонтальной и вертикальной составляющей скорости при посадке и другое оборудование, в том числе и научная аппаратура.
Двигательная установка посадочной ступени использовалась не только для проведения торможения при посадке, но и для осуществления коррекции орбиты при перелете от Земли до Луны. В составе двигательной установки были также два двигателя малой тяги, которые включались на заключительном этапе посадки. Основной двигатель посадочной ступени имел возможность многоразового запуска.
Посадка на Луну в отличие от первых спусков на лунную поверхность проводилась не непосредственно с перелетной траектории, а с предварительным выведением космического аппарата на орбиту искусственного спутника Луны. Путем проведения маневров, выполняемых с помощью двигательной установки, формировалась предпосадочная орбита, необходимая для создания оптимальных условий точной посадки в заданный район лунной поверхности.
Особенностью такой орбиты является небольшая высота орбиты в перицентре над поверхностью Луны — всего около 15 км. Перицентр в этом случае организуется над заданным районом посадки. Отметим, что такая высота обусловлена наличием на Луне гор высотой до 9 км, оставшееся расстояние 5-б км как раз обеспечивало допустимые погрешности в формировании орбиты.
Перед включением двигательной установки для осуществления посадки проводились операции ориентирования и программного разворота станции, чтобы обеспечить движение станции соплом двигателя вперед. Протяженность трассы полета с включенным двигателем от точки схода с орбиты до места прилунения составляла 250 км. На всем участке снижения положение станции строго стабилизировалось. Высота и вертикальная скорость спуска находились под непрерывным контролем бортового доплеровского измерителя скорости и высотомера. Все операции при спуске осуществлялись автоматическими устройствами станции без вмешательства Земли.
По достижении заданных значений высоты над лунной поверхностью и вертикальных составляющих скорости двигатель выключился и повторно включился, а на высоте 20 м вместо него начинали работать двигатели малой тяги. Перед включением двигателя для осуществления торможения два отсека с опорожненными топливными баками (топливо использовалось при проведении коррекции и торможении у Луны для создания орбиты искусственного спутника Луны), а также с аппаратурой астронавигации и другими приборами, не задействованными для проведения посадки, сбрасывались, и на Луну опускалась облегченная посадочная ступень с полезным грузом (рис. 7). В качестве последнего использовалась у «Луны-16», «Луны-20» и «Луны-24» возвратная ракета Луна — Земля, а для «Луны-17» и «Луны-21» — самоходный аппарат «Луноход».
Рис. 7. Спускаемый аппарат станции «Луна-16»: 1 — антенна; 2 — грунтозаборное устройство; 3 — отсек системы управления; 4 — топливный бок; 5 — опора; 6 — двигатель
Посадочная ступень после выключения двигательной установки опускалась на поверхность. Удар о грунт смягчали четыре опоры с амортизаторами. Причем энергия удара расходовалась на растяжение металлических стержней, расположенных в стойках опор, и на смятие тарельчатых опор, изготовленных с сотовым заполнением.
СПУСКАЕМЫЙ АППАРАТ СТАНЦИИ «СЕРВЕЙЕР»
СПУСКАЕМЫЙ АППАРАТ КОРАБЛЯ «АПОЛЛОН»
СПУСК В РАЗРЕЖЕННОЙ АТМОСФЕРЕ
СПУСКАЕМЫЕ АППАРАТЫ СТАНЦИИ «МАРС»
При решении вопроса, какой схеме отдать предпочтение: использовать после аэродинамического торможения двигательную установку или парашютную систему и только на заключительном этапе двигательную установку для мягкой посадки на поверхность, — победила вторая схема, И эта победа досталась благодаря лучшим массовым характеристикам для спускаемого аппарата. Действительно, при первой схеме масса тормозной системы, как показывают расчеты, составляла бы 70% массы спускаемого аппарата, по второй схеме — только 50%. Таким образом, применение парашютной системы как одной из составляющей всего процесса торможения спускаемого аппарата дает выигрыш в массе используемой научной аппаратуры и другого оборудования.
Поскольку атмосфера Марса сильно разреженная, а возможность аэродинамического торможения тем больше, чем больше мидель спускаемого аппарата при неизменной массе, то на спускаемый аппарат надели аэродинамический тормозной конус диаметром 3,4 м. При проектировании спускаемого аппарата предусматривалось, что вход в атмосферу должен происходить с нулевым аэродинамическим качеством и, следовательно, движение на участке спуска будет происходить по баллистической траектории. Следовательно, на спускаемый аппарат не потребовалось устанавливать системы управления движением спуска.
При осуществлении полета второй и третьей автоматической станции «Марс» предусматривалось проведение мягкой посадки спускаемого аппарата на поверхность планеты и передачи сигналов на станцию, совершающую полет по орбите вокруг планеты. С целью создания искусственного спутника Марса необходимо было осуществить вывод станции в район планеты Марс таким образом, чтобы ее движение осуществлялось не по попадающей траектории, а по пролетной, причем на сравнительно небольшом расстоянии от поверхности.
Но для спускаемого аппарата такая траектория неприемлема, для него траектория полета должна заканчиваться попаданием если не в саму планету, то хотя бы в атмосферу. Однако вследствие разреженности атмосферы и, следовательно, чтобы увеличить путь движения аппарата в ней для возможно более эффективного аэродинамического торможения, полет спускаемого аппарата должен происходить почти по касательной к поверхности планеты. Правда, из-за соображений надежности выполнения задачи было принято, чтобы угол входа составлял не менее 10°. При меньших углах входа атмосфера могла не захватить спускаемый аппарат, поскольку в этом случае не было бы эффективного торможения и спускаемый аппарат, отрикошетировав, ушел бы прочь от планеты.
Решение всех этих проблем привело к тому, что полет станции «Марс» был запланирован по пролетной траектории, но на расстоянии около 40 тыс. км от планеты было предусмотрено отделить спускаемый аппарат от станции и направить его по новой траектории в атмосферу планеты. Чтобы обеспечить возможность изменить траекторию полета, на спускаемый аппарат установили систему увода, состоящую из фермы с двигательной установкой на твердом топливе и системы управления.
Перед разделением станции и спускаемого аппарата станция «Марс» была ориентирована определенным образом, с тем чтобы спускаемый аппарат в момент отделения был направлен в требуемое направление. Через 15 мин после разделения включился твердотопливный двигатель увода. Получив дополнительную скорость, равную 120 м/с, спускаемый аппарат направился в расчетную точку входа в атмосферу. Затем система управления, размещенная на ферме, развернула спускаемый аппарат аэродинамическим тормозным конусом вперед по направлению движения, чтобы обеспечить правильный ориентированный вход в атмосферу планеты.
Для поддержания спускаемого аппарата в такой ориентации во время полета к планете, длящегося почти 4 ч, была осуществлена гироскопическая стабилизация. Раскрутка аппарата по продольной оси проводилась с помощью двух малых твердотопливных двигателей установленных на периферии аэродинамического тормозного конуса. Ферма с системой управления и двигателем увода, ставшая теперь ненужной, была отделена от спускаемого аппарата.
Перед входом в атмосферу Марса по команде от программно-временного устройства были включены два других твердотопливных двигателя, также расположенных на периферии тормозного конуса, после чего вращение спускаемого аппарата прекратилось. Отметим, что при этом учитывалось и следующее обстоятельство. После сброса системы увода момент инерции и масса спускаемого аппарата уменьшались, поэтому двигатели, предназначенные для остановки закрутки, создавали меньший импульс, чем двигатели гироскопической стабилизации.
Вращение же прекращалось в основном с тем, чтобы при вводе парашютной системы не произошло перехлестывание строп.
Вход спускаемого аппарата в атмосферу произошел при скорости 5600 м/с, но он был защищен от теплового воздействия аэродинамическим тормозным конусом, наружная поверхность которого была покрыта теплозащитной оболочкой (рис. 8). Торможение атмосферой продолжалось при снижении скорости до 2М. Ввод парашюта на таких скоростях требует больших усилий. При движении спускаемого аппарата в атмосфере с большими скоростями сзади него образуется разрежение, в которое может быть втянут парашют, еще не успевший раскрыться (особенно при вялом введении). Для принудительного ввода парашюта использовался твердотопливный двигатель, расположенный на крышке отсека вытяжного парашюта.
Рис. 8. Спускаемый аппарат станции «Марс-2»: 1 — аэродинамический конус; 2 — антенна радиовысотомера; 3 — парашютный контейнер; 4 — двигатель ввода вытяжного парашюта; 5 — двигатель увода спускаемого аппарата; 6 — приборы и аппаратура системы управления; 7 — основной парашют; 8 — автоматическая марсианская станция
В конце участка аэродинамического торможения по команде, последовавшей от датчика перегрузок, еще при сверхзвуковой скорости полета с помощью порохового двигателя был введен вытяжной парашют. Спустя 1,5 с с помощью удлиненного заряда разрезался торовый в виде баранки парашютный отсек, и верхняя часть отсека (крышка) была уведена от спускаемого аппарата вытяжным парашютом. Крышка, в свою очередь, ввела основной парашют с зарифленным куполом. Стропы основного парашюта крепились за связку твердотопливных двигателей, которые уже крепились непосредственно к спускаемому аппарату.
Когда аппарат затормозился до околозвуковой скорости, то по сигналу от программно-временного устройства была проведена разрифовка — полное раскрытие купола основного парашюта. Спустя 1-2 с был сброшен аэродинамический конус и открылись антенны радиовысотомера системы мягкой посадки. За время спуска на парашюте в течение нескольких минут скорость движения снизилась примерно до 60 м/с.
На высоте 20-30 м по команде, поступившей от высотомера, был включен твердотопливный тормозной двигатель мягкой посадки и был отцеплен верхний твердотопливный двигатель увода вместе с основным парашютом. Последний увел в сторону парашют, чтобы его куполом не был бы закрыт спускаемый аппарат. Спустя некоторое время двигатель мягкой посадки выключился, и спускаемый аппарат, отделившись от парашютного контейнера, опустился на поверхность. При этом парашютный контейнер с двигателем мягкой посадки с помощью двигателей малой тяги был уведен в сторону. В момент посадки специальное амортизационное покрытие надежно защитило спускаемый аппарат от возможных повреждений.
В ходе этого космического эксперимента впервые была применена оригинальная система связи. Сигнал со спускаемого аппарата, находящегося на поверхности планеты, шел на искусственный спутник Марса — станцию «Марс-3», которая после разделения со спускаемым аппаратом и включения двигателя вышла на орбиту вокруг Марса. На спутнике запоминались сигналы, переданные с Марса. Потом, спустя некоторое время, эти сигналы уходили на Землю.
СПУСКАЕМЫЙ АППАРАТ СТАНЦИИ «ВИКИНГ»
ИССЛЕДОВАНИЯ ПРИ ЖЕСТКОЙ ПОСАДКЕ
ЗАКЛЮЧЕНИЕ
Таблица — Хроника пилотируемых полетов 1
№
Дата запуска
Космонавты (первым указан командир КК) 2
КК 3
Продолжительность полета
103 4
24.I
Т. Маттингли (3) Л. Шривер (р. 1944) Э. Онизука (р. 1946) Дж. Бучли (р. 1945) К. Пейтон (р. 1948) 5 Все США
Д
3 сут 01 ч 33 мин
1 ПРОДОЛЖЕНИЕ. Начало см. в брошюрах №3, 7, 11 и 12 за 1984 г.
2 Выделены космонавты, впервые стартовавшие в космос (у остальных в скобках указано количество полетов в космос).
3 Полное название КК — «Дискавери».
4 Секретный полет по программе Пентагона.
5 Космонавт министерства обороны США.
Евгений Иванович Попов
СПУСКАЕМЫЕ АППАРАТЫ
Главный отраслевой редактор Л. А. Ерлыкин. Редактор Е. Ю. Ермаков. Мл. редактор Л. Л. Нестеренко. Обложка художника А. А. Астрецова. Техн. редактор И. В. Лбова. Корректор С. Л. Ткаченко.
ИБ 7507 Сдано в набор 16.01.85. Подписано к печати 21.03.85. T 03903. Формат бумаги 84Х1081/32. Бумага тип. № 3. Гарнитура литературная. Печать высокая. Усл. печ. л. 3,36. Усл. кр.-отт. 3,57. Уч.-изд. л. 3.47. Тираж 33 500 экз. Заказ 148. Цена 11 коп. Издательство «Знание». 101835, ГСП, Москва, Центр, проезд Серова, д. 4. Индекс заказа 854204. типография Всесоюзного общества «Знание». Москва, Центр, Новая пл., д. 3/4.