- Нижнее сканирование или боковое сканирование
- Терминология
- DownScan Imaging против SideScan Imaging
- SideScan
- Преимущества
- Недостатки
- DownScan
- Преимущества
- Недостатки
- Что лучше: боковое или нижнее сканирование?
- Вывод
- Режим работы DSI (DownScan Imaging) — что это такое?
- Описание режима нижнего сканирования — DSI (DownScan Imaging)
- Основные различия эхолотов
- 1. Частоты и лучи.
- 🐠 На сегодняшний момент, активно используются следующие частоты:
- 2. Датчик (Трансдьюсер)
- 3. Дисплей эхолота
- 4. Портативный эхолот
- 5. Стандартный эхолот
- 6. GPS эхолот (картплоттер)
Нижнее сканирование или боковое сканирование
Вы когда-нибудь задумывались о том, чтобы сравнить одну технологию эхолокации с другой? Наличие эхолота с боковым и нижним сканированием это замечательно, но нужно понимать, когда лучше всего использовать тот или иной режим.
В этой статье мы рассмотрим, что лучше: боковое сканирование или нижнее.
Терминология
Часто нам задают вопросы, такие как: Что лучше DownVü и SideVü от Garmin или DownScan и SideScan от Lowrance, а также что лучше использовать в том или ином сценарии: Нижнее сканирование или Боковое.
Одной из причин того, что сравнение тех или иных режимов от разных производителей весьма сложная задача, является тот, что эти термины обычно используются в маркетинговых целях; следовательно, это фирменные названия.
Например, ведущий производитель эхолотов Lowrance использует термины DownScan и SideScan в качестве обозначения данных режимов, Garmin же использует термины DownVü и SideVü. Humminbird использует термины «нижнее изображение» и «боковое изображение».
Помимо названий, рыболовы часто пытаются определить направление, в котором их эхолоты испускают волны сонара.
В то время как модели эхолотов с нижним сканирование имеют датчик, направляющий волны эхолота под лодку, модели с боковым сканированием направляют лучи в сторону лодки. Следует отметить, что оба типа сканирования в определенном смысле лучше друг друга. Следовательно, всегда важно понимать обстоятельства, в которых каждый используется.
DownScan Imaging против SideScan Imaging
В этой части статьи мы будем напрямую сравнивать боковое и нижнее сканирование. Мы рассмотрим преимущества и недостатки каждого из них.
SideScan
Преимущества
- При использовании эхолота с боковым сканированием вы можете быстро просмотреть большой участок территории. Это достигается благодаря тому, что два луча смотрят в разных направлениях. Следовательно, эффективность просмотра структуры определенной области у него выше, чем у нижнего сканирования.
- Благодаря лучшему углу обзора в сравнении с нижним сканированием, боковое обеспечивает лучшее качество изображения водной среды.
- Оно эффективно при поиске рыбы в неглубоких реках и при поиске за препятствиями. В таких областях его ориентация дает лучшее изображение, чем у нижнего сканирования.
Недостатки
- Модели с боковым сканированием дороже, чем модели с нижним сканированием. Хотя они стоят каждого рубля, часто рыболовы не готовы платить столько.
- Эхолоты с боковым сканированием не дают четкого понимания ситуации под лодкой. Это означает, что рыболов может захотеть иметь эхолот, который дает картину именно под лодкой.
- Поскольку боковые сканеры лучше работают, когда лодка движется с низкой скоростью, их труднее использовать, когда вы мчитесь по водоему, чтобы добраться до места, где находится рыба. Тем не менее, тот факт, что эхолоты с боковой визуализацией могут покрывать большее пространство водоема в любой момент времени, означает, что они все еще нужны.
DownScan
Преимущества
- Модели с нижним сканированием обычно полезны при ловле в глубоких водоемах. Таким образом узкий луч нижнего сканирования охватывает достаточно территории, чтобы охватить проплывающую рыбу.
- Вы можете получить хорошие изображения, даже если ваша лодка движется с высокой скоростью, по сравнению с боковым сканером, который работает хорошо только при низкой скорости.
Недостатки
- Оно не предоставляют достаточно информации о структуре дна, как это делает боковое сканирование.
Что лучше: боковое или нижнее сканирование?
Оба режима различны в том, как они работают, и в том, что они визуализируют. При определении того, что лучше именно для вас, вы должны учитывать глубину, на которой вы будете ловить рыбу, а также скорость, с которой вы будете передвигаться. Кроме того, вы должны подумать о размере рыбы и местности, в которой вы будете ловить рыбу.
Вывод
В конце концов, нельзя так просто выбрать одно или другое. Ваше решение должно основываться на определенных сценариях использования. Если вы выбираете эхолот с боковым сканированием или нижним, то это тот случай, где нужно хорошо все обдумать.
Боковые изображения лучше на мелководье и охватывают более широкий диапазон. Нижние изображения идеально подходят для большей глубины и при этом модели, поддерживающие его дешевле.
Режим работы DSI (DownScan Imaging) — что это такое?
Описание режима нижнего сканирования — DSI (DownScan Imaging)
Не так давно появились эхолоты Lowrance с технологией нижнего сканирования DSI (DownScan Imaging) . DSI можно перевести как – «изображение нижнего сканирования». Очень многие рыбаки очень образно понимают суть данной технологии и для чего она нужна. Давайте попробуем разобраться, что такое режим DSI , как он работает и для чего, собственно, нужен эхолот с данной функцией рыбаку?
Для начала, вспомним технологию сканирования Broadband , которая используется в большинстве известных эхолотов бюджетного (и не очень) уровня, чтобы сравнить, чем режим Broadband отличается от DSI режима.
Broadband – это режим сканирования конусными лучами, то есть на выходе мы имеем охват дна в виде круга, диаметр которого зависит от угла излучения трансъдюсера (см. рисунок). Например при угле сканирования лучам 60 градусов – на глубине 3 метра мы имеем охват дна (пятно) – 3 метра. Соответственно на экране эхолота получаем проекцию всего, что попало в луч датчика. Надо понимать, что рыба, которая попала в правую часть луча и левую часть на экране будет располагаться примерно в одном месте.
Для чего используются два (и более) луча в данном режиме? Для более точного позиционирования рыбы. Ведь если мы включим более узкий луч, то и более точно будем понимать, что рыба находится ближе к вам.
В отличии от эхолота классического (вышеописанного) типа, луч нижнего сканирования (DSI режим) представляет из себя не круглый конус (как свет от фонаря), а имеет форму узкой «полоски» шириной около 2 градусов и углом вниз около 60 градусов. Получается узкий «клин, который перпендикулярен курсу лодки.
Что из этого следует?
1. Данный режим работы пригоден только в движении, поскольку шанс на то, что рыба попадет именно в такой узкий конус, минимален. К тому же рельеф дна в таком узком луче также толком не посмотреть
2. Двигаться необходимо только вперед, поскольку движение боком существенно исказит картинку. Желательно во время движения не изменять курс.
3. При движении сосканированные «клины» стыкуются на экране и, на выходе, получается четкая картинка дна и придонных областей.
1. Режим DSI незаменим для того, чтобы получить четкое представление о рельефе и структуре дна, наличии на дне коряг, травы и других объектов. Если приоритет на рыбалке – спининг или троллинг — то выбор, однозначно, за эхолотами с данной функцией.
2. Если приоритет — стационарная (неподвижная) ловля, а также зимняя рыбалка, то обычный эхолот с режимом Broadband .
Напрашивается вопрос… А пригоден ли вообще режим DSI для рыбной ловли? Отображает ли он рыбу?
Несомненно ДА! Обычный режим сканирования дна зачастую не покажет четко объекты, отстоящие от дна менее, чем на 50 см., а иногда эти объекты сольются на картинке эхолота со дном. В режиме нижнего сканирования DSI объекты в придонной области и на дне видно очень четко и мы, с большой вероятностью, определим стоящую в придонном слое рыбу (например сома).
А если хочется иметь два режима в одном эхолоте? Выход есть!
Совсем недавно появились прекрасные модели эхолотов Lowrance с режимом HDI . Данные эхолоты совмещают в себе оба рассмотренных режима ОДНОВРЕМЕННО. Мало того, работают они синхронно с одного датчика и на экран выводится два изображения сразу!
Поэтому эхолоты, в которых есть только один режим DSI , стремительно уступаю дорогу новинкам. Например, это новые модели эхолотов Lowrance ELITE-4x HDI, Lowrance Elite 5х HDI, Lowrance Elite-7x HDI и их старшие собратья со встроенным GPS навигатором Lowrance ELITE-4 HDI, Lowrance Elite-5 HDI, Lowrance Elite-7 HDI.
При перепечатке статьи обязательна ссылка на сайт Континент
Основные различия эхолотов
1. Частоты и лучи.
Чем больше лучей, тем шире охват. Частота, на которой работает излучатель, влияет на глубину проникновения сигнала и возможность разделения слабых отражённых сигналов для получения большей детализации. Низкочастотный сигнал имеет большую глубину проникновения, но слабую детализацию и наоборот, высокочастотный сигнал больше подвержен рассеиванию в воде, но обеспечивает более высокую четкость и детализацию. Иными словами, глубина обнаружения подводных объектов и точность их различения при одинаковой мощности излучения зависит от частоты. Частота в данном контексте это количество посылаемых датчиком импульсов в секунду.
🐠 На сегодняшний момент, активно используются следующие частоты:
Так называемая «морская» частота. Разработана для мощного пробивания толщи морской воды. Создает луч порядка 90 градусов, который способен отображать дно на глубинах до 1500 метров. Почему ее луч шире предыдущей частоты? По логике это сделано это для противодействия сбивающему свойству качки. На практике, при включении этой частоты, «щелчки» от датчика становятся редкими, но сильными. Таким образом, этот луч глубже пробивает соленую, более плотную воду. Но думаю, вряд ли Вам пригодится эта частота даже для морской рыбалки на глубинах до 100 метров. Он шире классического 200 кГц неслучайно. В данном случае ширина луча позволит сгладить искажение реальной глубины в результате качки. То есть более широкий луч будет лучше отображать дно, когда судно качает в море. Когда его включать? Тогда, когда 200 частота уже не справляется. Не добивает до дна, соответственно не отображает дно, по причине излишней глубины, качки или скорости движения.
Относительно новая частота, разработана для использования на мелководье. Мелководье, в моем понимании, — это 6м и мельче. При ее включении ширина луча возрастает до 120 градусов (при установке максимальной чувствительности). Соответственно захват дна становиться больше в два раза в сравнении с 200 кГц лучом. С одной стороны хорошо — больше покрытие дна, с другой стороны падает точность прорисовки дна, особенно при прохождении вдоль берегового свала, когда одна сторона луча касается верхнего края бровки, а другая нижнего. Поэтому лучше не злоупотреблять включением этой частоты без надобности. Есть смысл включать ее на откровенно мелких местах — менее 4 метров. Хотя вряд ли это добавит шансов увидеть в стороне стоящую рыбу. Скорее всего она уплывет из-под лодки до того как попадет в зону действия луча. Другое дело, когда ловим в отвес сома на квок или ставриду в море. В два раза шире луч, скорее всего, позволит увидеть снасть или рыбу, не попавшую в более тонкий конус луча 200 кГц. И здесь есть полный смысл пробовать ее применять.
Самая распространенная частота для эхолотов. Работает примерно до 300 метров, создает луч шириной до 60 градусов (при условии установки высокого уровня чувствительности) и наиболее чистую и четкую картинку. Т.е. сам по себе этот луч узкий для более четкой прорисовки дна, но когда мы увеличиваем параметр чувствительности, он расширяется и, соответственно захватывает больше подводных объектов, например рыбы. Для чего это нужно? Понятно, что для поиска рыбы широкий луч это хорошо, но хорошо тоже должно быть в меру. Если луч будет излишне широкий, он будет собирать вообще все подряд вокруг лодки. На экране возникнет каша из массы дуг или рыбок, но понять где это все есть или было будет весьма затруднительно. Но это еще не все. Есть еще один нюанс — если широким лучом прибор будет сканировать дно, то начнутся серьезные неточности между показаниями на экране и настоящим рельефом дна. Особенно при прохождении вдоль берегового свала. Например — если берег и свал от него находится, предположим, по правому борту то правый край нашего излишне широкого луча будет «падать» на верхний край бровки, а левый будет «падать» вниз с бровки. На экране в этом случае будут рисоваться колоссальные, резкие перепады глубины, которых на самом деле нет. Мы просто идем вдоль берегового свала как на верхней схеме с лучами. На вершине свала будет, предположим 2-3 метра, а в низу, предположим, 7-8 и процессор эхолота будет «путается в показаниях» что же нам показать 2 или 5 или 8 метров. Именно поэтому Humminbird и сделал такой «умный» луч. Так что узкий луч это скорее хорошо, если важен в первую очередь точный рельеф дна. Вот еще одна аналогия, чтобы легче понять почему. Представьте себе, что Вам нужно нарисовать какой-то ландшафт. У Вас есть для этого широкая, строительная кисть и тонкий карандаш. Чем будет лучше, четче и точнее рисовать? Опять же повторюсь — особенно это касается прохождения вдоль резкой береговой бровки, когда одна сторона луча касается ее верхней части, а вторая «падает» вниз. Но стоит заметить, что новые частоты 455 и 800 кГц и соответственно лучи уже устроены по другим принципам и при значительной ширине точность изображения дна и донных структур просто потрясающая. Но об этом ниже. Если в Вашем эхолоте есть выбор между 200, 83 и 50 частотами, именно 200 кГц будет основной частотой в подавляющем большинстве случаев на Ваших рыбалках. Остальные две будут только вспомогательными для специальных условий, о которых речь пойдет ниже. Еще стоит сразу предупредить, что три названные частоты одновременно в эхолоте не могут работать. Даже если в меню есть все три, работать одновременно будут только две. В этом случаи при включении обоих эхолот сам поделит экран на два окна. В одном будет картинка с одной частотой, в другом с другой. Какие именно частоты будут у вас работать зависит от датчика и настроек меню эхолота. «Морской» датчик может создавать 200 и 50 частоту, обычный датчик 200 и 83 частоты. То есть все зависит от датчика, а не от «головы».
Для эхолотов нового поколения, внедрены две новые частоты — 455 и 800 кГц.
Позволяет дальше в стороны и глубже пробивать толщу воды, приблизительно процентов на 30 в сравнении с 800-ой частотой. Но несколько уступает в качестве. Точнее — в тонкости прорисовки деталей донных структур.
Несколько сокращает длину боковых лучей и начинает «теряться» на глубине более 18 метров при значительно заиленном дне. С другой стороны, при быстром поиске на полной скорости (разумеется, не на значительных глубинах), я бы предпочел включить именно ее. Потому как, при такой, существенно превышающей остальные, частоте посылания импульса, картинка имеет шанс изобразиться детальнее, чем на 455 частоте, не говоря уже о классических 200, 50, 83 кГц. На практике получается, что 455 кГц все-таки намного чаще применяется, и включать 800 есть смысл только либо на глубинах менее 6 метров или для тонкой прорисовки Даунсканера (нижнего высокочастотного луча), и то до глубины 15 метров. На разделенном экране DownVü хорошо видно, насколько более детальным является изображение подводных объектов, что позволяет даже определять их происхождение и реальную форму.
2. Датчик (Трансдьюсер)
Датчик эхолота (далее преобразователь), является важнейшим элементом эхолота, во многом определяющим его характеристики. Он преобразует энергию электрических высокочастотных импульсов в ультразвуковые колебания и, в то же время, производит обратное преобразование отраженных ультразвуковых сигналов в электрические сигналы. Преобразователь должен быть способен проводить мощные импульсы передатчика, преобразовывая электрические импульсы в звуковые с минимальными потерями мощности. В то же самое время он должен быть достаточно чувствительным, чтобы принять самые слабые из отраженных сигналов. Все это относится к определенной установленной частоте и при этом преобразователь должен игнорировать эхо приходящих на других частотах. Другими словами, преобразователь должен быть очень эффективен. По способу преобразования электрической энергии в звуковую существуют несколько видов преобразователей, но на малых судах в силу их малых размеров прижились только пьезоэлектрические. Основным элементом пьезоэлектрического преобразователя является кристалл титаната бария (встречаются кристаллы и из других материалов) цилиндрической формы с нанесенными на его поверхности металлическими покрытиями. Такой кристалл помещается в металлический или пластиковый корпус и заливается хорошо проводящим звук материалом. Немного подробнее об этом активном элементе преобразователя, как уже сказано выше, искусственный кристалл это цирконат свинца или титанат бария, компоненты смешиваются, а затем формуются. Эта форма помещается в печь, в которой превращается из смеси химикатов в прочный кристалл. Как только кристалл охладится, к двум сторонам кристалла прикрепляются провода. Провода прочно спаяны с поверхностью кристалла, так что кристалл может быть подключен к кабелю преобразователя. Форма кристалла определяет частоту его работы и конический угол. Для круглых кристаллов, используемый большинством эхолотов, толщина определяет его частоту, а диаметр определяет угол конуса или угол зоны обзора. Например, в 192 кГц эхолоте, с коническим углом 20 градусов размеры кристалла приблизительно один дюйм в диаметре, при этом восьми градусный эхолот требует кристалла, диаметр которого несколько дюймов. Итог: больший диаметр кристалла — меньший конический угол. Это причина, почему преобразователь с конусным углом 20 градусов намного меньший, чем преобразователь с конусным углом в 8 градусов, при использовании одинаковой частоты.
Используемые в рыбопоисковых эхолотах преобразователи различаются по следующим признакам:
- По количеству лучей;
- По составу данных, которые может поставлять преобразователь
- По материалу, из которого сделан корпус преобразователя;
- По месту установки преобразователя на судне.
3. Дисплей эхолота
Экран эхолота (дисплей), является важной частью прибора. Чем чётче картинка, тем легче происходит получение визуальной информации, и тем удобней им пользоваться. Жидкокристаллические дисплеи, подобно шахматной доске, представляют собой сеть крошечных точек (пикселей), темнеющих при попадании на них электрического разряда. Компьютер эхолота формирует изображение на своем экране, затемняя обозначенные пиксели, и оставляя «незаполненными» другие. Количество пикселей на экране определяет насколько детально эхолот сможет отобразить ситуацию под водой. Следует знать, что пиксели располагаются в рядах и колонках и чем больше пикселей в каждой колонке, тем выше разрешение экрана, а следовательно — детальнее изображение. Использование эхолотов с разрешением менее чем в 240 пикселей, уже затрудняет визуальное восприятие (мы говорим о стандартном эхолоте, установленном в лодке), поэтому разрешению экрана при выборе прибора следует уделить особое внимание. Будет ли он монохромным или цветным, зависит уже от ценовой категории прибора. Конечно на цветном экране картинка более яркая и различимая, однако при достаточном разрешении экрана, может быть достаточно и монохромного дисплея. Обычно это недорогие модели без функции GPS (не картплоттеры).
4. Портативный эхолот
Существуют портативные эхолоты, которые выпускаются в двух вариантах: уже собранные и в виде отдельных комплектующих. Если у вас есть второй катер, лодка, или вы просто взяли еще одну лодку напрокат, то можно приобрести отдельный блок питания, датчик-присоску и использовать один и тот же дисплей, подключенный к эхолотам сразу на двух лодках. Такой тип эхолотов может так же оказаться просто находкой для подледной рыбалки.
5. Стандартный эхолот
Обычно в комплектацию стандартного эхолота входят: сам эхолот, кормовая струбцина с датчиком, кабель питания и аккумулятор. Такие эхолоты подходят для использования на разных лодках, в том числе и на разборных лодках (или лодках из пвх). Их плюс — быстрая установка на уже подготовленное и настроенное штатное место. Основное отличие — это мобильная струбцина (см. документацию тут) особой конструкции, механизм которой позволяет уберечь датчик в случае его столкновения с подводным препятствием, или дном.
6. GPS эхолот (картплоттер)
GPS-картплоттер или трекплоттер, это комбинация приборов, включающая в себя сонар, или как его еще называют — глубинный эхолот и спутниковый навигатор для определения координат. На экране картплоттера ваше местоположение указывается на карте, таким образом вы в любой момент можете узнать где именно вы находитесь. GPS-эхолоты с трекплоттер только указывают ваш курс. Сочетание этих приборов позволит сохранить вашу позицию или поможет вернуться на заданное местоположение при отклонении от курса. Например использование картплоттера, позволяет точно выходить на «рыбное» место, которое вы запомнили на карте водоёма, на предыдущей рыбалке.