Что такое угол луча эхолота

Основные различия эхолотов

1. Частоты и лучи.

Чем больше лучей, тем шире охват. Частота, на которой работает излучатель, влияет на глубину проникновения сигнала и возможность разделения слабых отражённых сигналов для получения большей детализации. Низкочастотный сигнал имеет большую глубину проникновения, но слабую детализацию и наоборот, высокочастотный сигнал больше подвержен рассеиванию в воде, но обеспечивает более высокую четкость и детализацию. Иными словами, глубина обнаружения подводных объектов и точность их различения при одинаковой мощности излучения зависит от частоты. Частота в данном контексте это количество посылаемых датчиком импульсов в секунду.

🐠 На сегодняшний момент, активно используются следующие частоты:

Так называемая «морская» частота. Разработана для мощного пробивания толщи морской воды. Создает луч порядка 90 градусов, который способен отображать дно на глубинах до 1500 метров. Почему ее луч шире предыдущей частоты? По логике это сделано это для противодействия сбивающему свойству качки. На практике, при включении этой частоты, «щелчки» от датчика становятся редкими, но сильными. Таким образом, этот луч глубже пробивает соленую, более плотную воду. Но думаю, вряд ли Вам пригодится эта частота даже для морской рыбалки на глубинах до 100 метров. Он шире классического 200 кГц неслучайно. В данном случае ширина луча позволит сгладить искажение реальной глубины в результате качки. То есть более широкий луч будет лучше отображать дно, когда судно качает в море. Когда его включать? Тогда, когда 200 частота уже не справляется. Не добивает до дна, соответственно не отображает дно, по причине излишней глубины, качки или скорости движения.

Относительно новая частота, разработана для использования на мелководье. Мелководье, в моем понимании, — это 6м и мельче. При ее включении ширина луча возрастает до 120 градусов (при установке максимальной чувствительности). Соответственно захват дна становиться больше в два раза в сравнении с 200 кГц лучом. С одной стороны хорошо — больше покрытие дна, с другой стороны падает точность прорисовки дна, особенно при прохождении вдоль берегового свала, когда одна сторона луча касается верхнего края бровки, а другая нижнего. Поэтому лучше не злоупотреблять включением этой частоты без надобности. Есть смысл включать ее на откровенно мелких местах — менее 4 метров. Хотя вряд ли это добавит шансов увидеть в стороне стоящую рыбу. Скорее всего она уплывет из-под лодки до того как попадет в зону действия луча. Другое дело, когда ловим в отвес сома на квок или ставриду в море. В два раза шире луч, скорее всего, позволит увидеть снасть или рыбу, не попавшую в более тонкий конус луча 200 кГц. И здесь есть полный смысл пробовать ее применять.

Самая распространенная частота для эхолотов. Работает примерно до 300 метров, создает луч шириной до 60 градусов (при условии установки высокого уровня чувствительности) и наиболее чистую и четкую картинку. Т.е. сам по себе этот луч узкий для более четкой прорисовки дна, но когда мы увеличиваем параметр чувствительности, он расширяется и, соответственно захватывает больше подводных объектов, например рыбы. Для чего это нужно? Понятно, что для поиска рыбы широкий луч это хорошо, но хорошо тоже должно быть в меру. Если луч будет излишне широкий, он будет собирать вообще все подряд вокруг лодки. На экране возникнет каша из массы дуг или рыбок, но понять где это все есть или было будет весьма затруднительно. Но это еще не все. Есть еще один нюанс — если широким лучом прибор будет сканировать дно, то начнутся серьезные неточности между показаниями на экране и настоящим рельефом дна. Особенно при прохождении вдоль берегового свала. Например — если берег и свал от него находится, предположим, по правому борту то правый край нашего излишне широкого луча будет «падать» на верхний край бровки, а левый будет «падать» вниз с бровки. На экране в этом случае будут рисоваться колоссальные, резкие перепады глубины, которых на самом деле нет. Мы просто идем вдоль берегового свала как на верхней схеме с лучами. На вершине свала будет, предположим 2-3 метра, а в низу, предположим, 7-8 и процессор эхолота будет «путается в показаниях» что же нам показать 2 или 5 или 8 метров. Именно поэтому Humminbird и сделал такой «умный» луч. Так что узкий луч это скорее хорошо, если важен в первую очередь точный рельеф дна. Вот еще одна аналогия, чтобы легче понять почему. Представьте себе, что Вам нужно нарисовать какой-то ландшафт. У Вас есть для этого широкая, строительная кисть и тонкий карандаш. Чем будет лучше, четче и точнее рисовать? Опять же повторюсь — особенно это касается прохождения вдоль резкой береговой бровки, когда одна сторона луча касается ее верхней части, а вторая «падает» вниз. Но стоит заметить, что новые частоты 455 и 800 кГц и соответственно лучи уже устроены по другим принципам и при значительной ширине точность изображения дна и донных структур просто потрясающая. Но об этом ниже. Если в Вашем эхолоте есть выбор между 200, 83 и 50 частотами, именно 200 кГц будет основной частотой в подавляющем большинстве случаев на Ваших рыбалках. Остальные две будут только вспомогательными для специальных условий, о которых речь пойдет ниже. Еще стоит сразу предупредить, что три названные частоты одновременно в эхолоте не могут работать. Даже если в меню есть все три, работать одновременно будут только две. В этом случаи при включении обоих эхолот сам поделит экран на два окна. В одном будет картинка с одной частотой, в другом с другой. Какие именно частоты будут у вас работать зависит от датчика и настроек меню эхолота. «Морской» датчик может создавать 200 и 50 частоту, обычный датчик 200 и 83 частоты. То есть все зависит от датчика, а не от «головы».

Для эхолотов нового поколения, внедрены две новые частоты — 455 и 800 кГц.

Позволяет дальше в стороны и глубже пробивать толщу воды, приблизительно процентов на 30 в сравнении с 800-ой частотой. Но несколько уступает в качестве. Точнее — в тонкости прорисовки деталей донных структур.

Несколько сокращает длину боковых лучей и начинает «теряться» на глубине более 18 метров при значительно заиленном дне. С другой стороны, при быстром поиске на полной скорости (разумеется, не на значительных глубинах), я бы предпочел включить именно ее. Потому как, при такой, существенно превышающей остальные, частоте посылания импульса, картинка имеет шанс изобразиться детальнее, чем на 455 частоте, не говоря уже о классических 200, 50, 83 кГц. На практике получается, что 455 кГц все-таки намного чаще применяется, и включать 800 есть смысл только либо на глубинах менее 6 метров или для тонкой прорисовки Даунсканера (нижнего высокочастотного луча), и то до глубины 15 метров. На разделенном экране DownVü хорошо видно, насколько более детальным является изображение подводных объектов, что позволяет даже определять их происхождение и реальную форму.

Читайте также:  Станки для изготовления поплавков

2. Датчик (Трансдьюсер)

Датчик эхолота (далее преобразователь), является важнейшим элементом эхолота, во многом определяющим его характеристики. Он преобразует энергию электрических высокочастотных импульсов в ультразвуковые колебания и, в то же время, производит обратное преобразование отраженных ультразвуковых сигналов в электрические сигналы. Преобразователь должен быть способен проводить мощные импульсы передатчика, преобразовывая электрические импульсы в звуковые с минимальными потерями мощности. В то же самое время он должен быть достаточно чувствительным, чтобы принять самые слабые из отраженных сигналов. Все это относится к определенной установленной частоте и при этом преобразователь должен игнорировать эхо приходящих на других частотах. Другими словами, преобразователь должен быть очень эффективен. По способу преобразования электрической энергии в звуковую существуют несколько видов преобразователей, но на малых судах в силу их малых размеров прижились только пьезоэлектрические. Основным элементом пьезоэлектрического преобразователя является кристалл титаната бария (встречаются кристаллы и из других материалов) цилиндрической формы с нанесенными на его поверхности металлическими покрытиями. Такой кристалл помещается в металлический или пластиковый корпус и заливается хорошо проводящим звук материалом. Немного подробнее об этом активном элементе преобразователя, как уже сказано выше, искусственный кристалл это цирконат свинца или титанат бария, компоненты смешиваются, а затем формуются. Эта форма помещается в печь, в которой превращается из смеси химикатов в прочный кристалл. Как только кристалл охладится, к двум сторонам кристалла прикрепляются провода. Провода прочно спаяны с поверхностью кристалла, так что кристалл может быть подключен к кабелю преобразователя. Форма кристалла определяет частоту его работы и конический угол. Для круглых кристаллов, используемый большинством эхолотов, толщина определяет его частоту, а диаметр определяет угол конуса или угол зоны обзора. Например, в 192 кГц эхолоте, с коническим углом 20 градусов размеры кристалла приблизительно один дюйм в диаметре, при этом восьми градусный эхолот требует кристалла, диаметр которого несколько дюймов. Итог: больший диаметр кристалла — меньший конический угол. Это причина, почему преобразователь с конусным углом 20 градусов намного меньший, чем преобразователь с конусным углом в 8 градусов, при использовании одинаковой частоты.

Используемые в рыбопоисковых эхолотах преобразователи различаются по следующим признакам:

  1. По количеству лучей;
  2. По составу данных, которые может поставлять преобразователь
  3. По материалу, из которого сделан корпус преобразователя;
  4. По месту установки преобразователя на судне.

3. Дисплей эхолота

Экран эхолота (дисплей), является важной частью прибора. Чем чётче картинка, тем легче происходит получение визуальной информации, и тем удобней им пользоваться. Жидкокристаллические дисплеи, подобно шахматной доске, представляют собой сеть крошечных точек (пикселей), темнеющих при попадании на них электрического разряда. Компьютер эхолота формирует изображение на своем экране, затемняя обозначенные пиксели, и оставляя «незаполненными» другие. Количество пикселей на экране определяет насколько детально эхолот сможет отобразить ситуацию под водой. Следует знать, что пиксели располагаются в рядах и колонках и чем больше пикселей в каждой колонке, тем выше разрешение экрана, а следовательно — детальнее изображение. Использование эхолотов с разрешением менее чем в 240 пикселей, уже затрудняет визуальное восприятие (мы говорим о стандартном эхолоте, установленном в лодке), поэтому разрешению экрана при выборе прибора следует уделить особое внимание. Будет ли он монохромным или цветным, зависит уже от ценовой категории прибора. Конечно на цветном экране картинка более яркая и различимая, однако при достаточном разрешении экрана, может быть достаточно и монохромного дисплея. Обычно это недорогие модели без функции GPS (не картплоттеры).

4. Портативный эхолот

Существуют портативные эхолоты, которые выпускаются в двух вариантах: уже собранные и в виде отдельных комплектующих. Если у вас есть второй катер, лодка, или вы просто взяли еще одну лодку напрокат, то можно приобрести отдельный блок питания, датчик-присоску и использовать один и тот же дисплей, подключенный к эхолотам сразу на двух лодках. Такой тип эхолотов может так же оказаться просто находкой для подледной рыбалки.

5. Стандартный эхолот

Обычно в комплектацию стандартного эхолота входят: сам эхолот, кормовая струбцина с датчиком, кабель питания и аккумулятор. Такие эхолоты подходят для использования на разных лодках, в том числе и на разборных лодках (или лодках из пвх). Их плюс — быстрая установка на уже подготовленное и настроенное штатное место. Основное отличие — это мобильная струбцина (см. документацию тут) особой конструкции, механизм которой позволяет уберечь датчик в случае его столкновения с подводным препятствием, или дном.

6. GPS эхолот (картплоттер)

GPS-картплоттер или трекплоттер, это комбинация приборов, включающая в себя сонар, или как его еще называют — глубинный эхолот и спутниковый навигатор для определения координат. На экране картплоттера ваше местоположение указывается на карте, таким образом вы в любой момент можете узнать где именно вы находитесь. GPS-эхолоты с трекплоттер только указывают ваш курс. Сочетание этих приборов позволит сохранить вашу позицию или поможет вернуться на заданное местоположение при отклонении от курса. Например использование картплоттера, позволяет точно выходить на «рыбное» место, которое вы запомнили на карте водоёма, на предыдущей рыбалке.

Эхолот для рыбалки — не роскошь,а средство обнаружения

Большинство рыболовов, не имеющих в силу вполне понятных причин в своем распоряжении столь популярного в последнее время эхолота, считают это новейшее достижение рыболовной техники абсолютным гарантом успеха на рыбалке, мечтательно и с завистью взирая на него сквозь витрину магазина. Однако многие из тех, кто решился выложить за этот аппарат кругленькую сумму, с удивлением вдруг обнаруживают, что приобрели дорогую игрушку, дающую лишь возможность беспомощно разглядывать на дисплее косяки проплывающей «мимо» рыбы.

Сегодня мы поговорим о том, что же на самом деле умеет эхолот и как использовать этот дорогой, но действительно полезный прибор на все сто.

На примере эхолота среднего класса «Ultra III» фирмы Eagle мы рассмотрим базовые возможности современных эхолотов.

Принцип работы эхолота

Прежде чем приступать к ловле с эхолотом, крайне важно уяснить для себя принцип его действия. Дело в том, что эхолот, в отличие, например, от видеокамеры, не выводит на экран подводное пространство все сразу, а шаг за шагом с помощью вертикальных столбцов строит изображение, используя обработанные компьютером результаты ультразвуковых измерений.

Прибор состоит из двух функциональных частей: корпуса с экраном на жидких кристаллах и датчика-излучателя, закрепляемого на транце лодки и соединенного с прибором с помощью кабеля. Датчик непрерывно генерирует высокочастотные сигналы, которые, отразившись ото дна и других водных объектов, возвращаются обратно, неся информацию о подводной обстановке. Сила отражаемого сигнала зависит от свойств объекта (его величины, плотности и т.п.), что позволяет компьютеру прибора различать дно, рыбу, коряги, растительность.

Результаты измерений, полученные с помощью луча, как бы проецируются на ось конуса, в результате чего образуется вертикальный столбец, где системой штрихов показаны сигналы ото дна и обнаруженных в толще воды объектов (рис.1).

Читайте также:  Датчик для эхолота фишерман 220 дуо

Рис. 1. Формирование изображения на экране :
а) первый сигнал от датчика появляется в правой части экрана в виде вертикального столбца;
б) когда получен второй сигнал, первый столбец сдвигается на один шаг влево и его место
занимает столбец с результатами последнего замера;
в) через некоторое время весь экран заполняется системой вертикальных столбцов,
формирующих картинку подводного пространства

Это изображение появляется у правого края экрана. После каждого «посыла» луча изображение сдвигается на один шаг влево, а у правого края экрана вновь появляется вертикальный столбец с результатами последнего замера (рис.2).

Рис. 2. Механизм формирования вертикального столбца единичного замера :
1 — датчик; 2 — конус луча; 3 — рыбы в «поле зрения»;
4 — рыбы, «затененные» более крупными объектами

Поэтому, даже когда вы стоите на якоре, изображение на дисплее постоянно движется справа налево, так как датчик продолжает ритмично пульсировать. Дно изображается в этом случае в виде прямой горизонтальной линии, так как датчик получает неизменную информацию о глубине водоема. Рыбы, стоящие в конусе луча, также отобразятся в этом случае в виде горизонтальных линий. Поэтому для получения реальной картины рельефа дна вам необходимо перемещаться.

Итак, чтобы правильно считывать информацию с экрана, нужно прежде всего усвоить следующее правило: то изображение, которое только что появилось в правом столбце на дисплее — это и есть результаты последнего замера, то есть вид подводного пространства и дна в данный момент непосредственно под вашей лодкой. А изображение, перемещающееся к левому краю экрана — это уже история, все то, что осталось у вас за кормой. Чем дальше от правого края экрана удаляется изображение, тем дальше за кормой лодки остается соответствующий ему объект, если, конечно, лодка находится в движении.

Определение расстояний до объектов
Датчик посылает волны в виде одного или нескольких конусообразных пучков, наподобие лучей от карманного фонарика, расположенных в плоскости, перпендикулярной направлению движения судна (рис 3).

Рис. 3. Положение лучей датчика относительно лодки

Частота сигналов настолько высока, что даже при движении на большой скорости под мотором вы будете видеть полноценное изображение без разрывов. Но чем быстрее вы движетесь, тем сильнее изображение спрессовано по горизонтали. Поэтому, перемещаясь с небольшой скоростью, вы дольше будете видеть на экране отдельные элементы подводного мира, а значит, сумеете рассмотреть их более детально. Например, изображение пересекаемой нами подводной возвышенности при движении на большой скорости под мотором занимает лишь часть экрана, а двигаясь на веслах (с меньшей скоростью), мы получим изображение этой же гряды, растянутое по горизонтали на всю ширину экрана.

Эхолот постоянно выдает информацию о глубине и горизонте, на котором обнаружена рыба. Однако определение горизонтального расстояния от вашей лодки до рыбы, коряги, бровки и т.д. иногда становится проблемой. Как быть, если, заметив коряжник или косяк рыбы, вы решили встать на якорь и обловить интересное место? Простейший способ, который, впрочем, широко применяется при промысловом лове на морских рыболовецких судах — это, развернувшись на 180°, пройти перспективный отрезок пути обратным курсом на малой скорости. Как только заинтересовавший вас объект снова появится на вашем экране — бросайте якорь. Если вы движетесь на веслах, можно заякориться, не теряя времени на развороты. Когда лодка, наконец, остановится, интересный участок останется на каком-то расстоянии у вас за кормой. Примерно представляя себе скорость движения лодки, можно определить, куда следует делать заброс.

Объем исследуемого эхолотом подводного пространства зависит от количества включенных лучей датчика и от величины угла (обычно от 16 до 45°) каждого из лучей, в зависимости от модели эхолота. Угол конуса — величина, которую полезно знать для определения диаметра «высвеченного» лучом круга (если лодка статична) или ширины исследуемой эхолотом полосы дна (когда она движется).

Если конус луча имеет угол 20° (как в большинстве эхолотов фирмы Eagle, работающих в двухмерном режиме), то диаметр окружности, образованной лучом на дне, будет равняться 1/3 глубины. Допустим, вы рыбачите с эхолотом Ultra III, включив только центральный луч датчика. Прибор показывает глубину 10 метров, значит, луч «высвечивает» на дне круг диаметром примерно 3,3 метра.

Подобным образом, зная величину угла лучей любого датчика, можно определить диаметр «высвеченного» круга, освежив предварительно школьные знания по геометрии о решении задач с прямоугольными треугольниками.

Нужно заметить, что реальная форма лучей, посылаемых датчиком, лишь примерно напоминает конус, поэтому, производя расчеты, не увлекайтесь количеством знаков после запятой — ширину «читаемой» при движении лодки дорожки можно определить лишь приблизительно.

На водоеме
Многие рыболовы чувствуют себя неуверенно на новых, особенно крупных по площади, водоемах. По внешним признакам можно лишь приблизительно определить особенности подводного рельефа и места скопления рыбы. Поэтому именно при ловле на незнакомых водоемах преимущества эхолота наиболее очевидны.

Непродолжительное предварительное изучение места ловли с эхолотом — и вы уже знаете рельеф и структуру дна, имеете представление о наличии коряжников и подводной растительности, отметили буйками места стоянки рыбы и глубину, на которой она стоит. Однако большинство рыболовов допускает одну и ту же ошибку, изучая рельеф дна незнакомого водоема с помощью эхолота. Перемещение по водоему, напоминающее броуновское движение, дает противоречивую информацию. Прямолинейные проходы позволяют гораздо быстрее разобраться с подводным рельефом. Выбрав неподвижный ориентир (дерево на противоположном берегу), дающий возможность вам двигаться прямолинейно, начинайте измерения от самого берега. После нескольких параллельных проходов вы получите объективную картину рельефа дна неизвестного участка.

Только при движении прямолинейными отрезками вы сможете увидеть на дисплее наглядный классический профиль дна, остающегося у вас за кормой.

Производя измерения, рекомендую для облегчения восприятия поставить эхолот сбоку от себя, развернув экран таким образом, чтобы «картинка» перемещалось в направлении, противоположном движению лодки.

Естественно, тактика прямолинейных промеров подходит в основном для больших по площади водоемов. Работа с эхолотом на реках, а тем более — по лункам на зимней рыбалке имеет свои нюансы, главный из которых — необходимость четко представлять себе, в какой плоскости датчик посылает лучи и какие именно из них «задействованы». Но это уже тема будущего разговора, а тем, кто ловит с эхолотом с лодки в озерах и водохранилищах, рекомендую серьезно отнестись к расположению датчика на транце. Непринужденно опущенный за борт прямо на соединительном кабеле датчик — демонстрация полной неосведомленности о механизме работы прибора, требующего четкой ориентации излучателя относительно поверхности воды и киля лодки.

Двухмерный режим работы эхолота
Это наиболее популярный режим работы эхолотов, который действительно выполняет много полезных функций, невозможных в трехмерном режиме. Помимо двухмерного профиля рельефа дна, прибор дает информацию о твердости подводных объектов (функция «серая линия») и позволяет отключать режим идентификации рыбы.

Главное преимущество двухмерного режима — возможность более подробного, чем в трехмерном режиме, изучения подводного мира. При этом большинство двухмерных эхолотов с трехлучевыми датчиками широкого обзора (Broad-way) принципиально ни в чем не уступают трехмерным эхолотам, так как одновременно могут показывать на экране рыбу, находящуюся под лодкой (в вертикальном луче), и рыбу слева и справа от лодки (соответственно в левом и правом лучах). Символ рыбы из левого луча сопровождается индексом L, символ рыбы из правого луча — индексом R.

Читайте также:  Эхолот fish finder outlife

Кстати, рискуя несколько разочаровать потенциальных покупателей эхолотов, должен заметить, что пока этот прибор, к сожалению, не умеет различать виды рыб. Просто в зависимости от силы сигнала (от большой рыбы сигнал сильнее) эхолот выдает на экран один из четырех разно размерных символов.

Тем не менее по косвенным признакам можно с определенной долей достоверности предположить, что за рыба изображена на экране. Крупный символ около коряги — скорее всего щука или судак, несколько крупных символов в средних слоях воды — наверное, стая леща. Рыбача на реке Ахтубе в одной из глубоких ям, мы видели символы очень крупной рыбы, и ни у кого не возникло сомнений, что это сомы. Впрочем, как вы догадались, в этой методике многое зависит от воображения рыболова.

Несмотря на внешнюю привлекательность и наглядность режима Fish ID (идентификация рыбы), изображающего ее в виде соответствующих символов разного размера, настоятельно рекомендую, работая в двухмерном режиме, отключать почаще эту функцию. Как объяснили мне во ВНИИ морского рыбного хозяйства и океанографии, компьютер прибора — умная машина, но и он иногда обманывается. Часто он принимает за рыбу проплывающие под водой ветки, растения, даже просто пузырьки воздуха, вводя в заблуждение рыболова.

С другой стороны, все, что компьютер идентифицирует как «не рыба», автоматически убирается с экрана, а эта информация может оказаться весьма важной, например, лежащий на дне рекордный экземпляр.

Несколько раз мне приходилось слышать от владельцев эхолотов: «Подвожу ему под датчик здоровую рыбу на кукане, а он, собака, не видит». На самом деле при включенной функции Fish ID компьютер не идентифицирует этот слишком сильный сигнал вблизи датчика как рыбу, просто-напросто выбрасывая ее. А вот отключив этот режим, вы быстро убедитесь, что прибор далеко не так «слеп», как кажется.

Современные двухмерные эхолоты с высокой разрешающей способностью при отключенном режиме Fish ID способны обнаружить на дне. мормышку вашей удочки.

Если отключить режим Fish ID, то рыба, в отличие от других объектов, видна на дисплее в виде полумесяца, «рогами» вниз, причем дуга месяца тем круче, чем выше скорость лодки.

Формирование столь «странного» изображения имеет простое объяснение. При движении лодки рыба сначала попадает на периферию луча, где мощность сигнала существенно ниже, чем вдоль центральной линии. Поэтому отраженный от рыбы сигнал слабый, и в правом столбце экрана появляется чуть заметный темный штрих даже при наличии крупной рыбы. По мере приближения рыбы к центральной линии луча мощность сигнала возрастает в несколько раз, при этом в правом столбце толщина штриха соответственно увеличивается.

Кроме того, рыба приближается к датчику, что воспринимается эхолотом как уменьшение глубины, на которой расположен объект, т. е. штрих в правом столбце становится толще и заметно поднимается.

При дальнейшем движении лодки рыба, пройдя центральную линию луча, выходит из него. Происходит обратный процесс: штрих — изображение рыбы — становится все тоньше, снова загибаясь книзу (рис. 4).

Рис. 4. Так эхолот видит рыбу:
а) рыба «входит» в конус, ее изображение появляется на экране;
б) в центре конуса рыба находится на минимальном удалении от датчика,
поэтому штрих изображения поднимается вверх;
в) рыба «выходит» из конуса, удаляясь от датчика — щтрих изображения
уходит вниз; в результате формируется полумесяц

Изображение рыбы не всегда выглядит как классический полумесяц: иногда видны только «рога», если рыба проходит не через центр луча, а лишь «зацепив» его край.

Другая причина появления полумесяца неправильной формы — изменение направления и скорости движения рыбы в конусе. И все же характерные полумесяцы от рыб трудно перепутать с другими подводными объектами, особенно в режиме увеличенного изображения.

Для рыболова особый интерес в двухмерном режиме работы эхолота представляет функция «серая линия» (Grey Line), наличие которой является не последним аргументом при выборе той или иной модели эхолота.

Разные по плотности подводные объекты отображаются на экране разными оттенками: более плотные лучше отражают сигнал и показаны серым, менее плотные — черным. Grey Line позволяет различать на дне валуны, коряги, растительность, например, лежащий на дне объект, имеющий серую «сердцевину» — валун, полностью темный — скорее всего, донные растения.

Но, пожалуй, наибольшее практическое значение этой функции — возможность определить характер дна водоема: чем шире серая линия, тем тверже дно, и наоборот. Опытным рыболовам не нужно объяснять, что участки, где твердое (например, песчаное или каменистое) дно граничит с мягким (илистым или глинистым) — весьма перспективные места для ужения.

Трехмерный режим эхолота
Не обладая такими полезными функциями, как «серая линия» и отключение режима Fish ID, трехмерный режим зато дает весьма наглядное объемное изображение подводного рельефа достаточно широкой полосы дна за вашей лодкой. В этом режиме каждый из лучей датчика строит свой двухмерный профиль. Точки, равноудаленные от датчика, соединяются между собой через определенные промежутки поперечными линиями, образуя своеобразную сетку, которая и создает ощущение объема.

Трехмерный режим выглядит очень привлекательно, но за наглядность приходится расплачиваться существенным снижением подробности изображения. При одновременной работе четырех или даже шести лучей датчика трехмерного эхолота компьютер не в состоянии «обсчитать» информацию столь же подробно, как при работе одного луча. Именно поэтому символов определяемой им рыбы гораздо меньше, чем в двухмерном режиме, да и контуры дна переданы весьма приблизительно.

Американские рыболовные изобретения всегда настороженно воспринимались европейцами. Так было с мягкими приманками — твистерами, так случилось и с эхолотом. Но если твистеры здесь недооценили, с эхолотом все было наоборот. Несмотря на то, что в США эхолот является базовым элементом оснащения любого рыболовного катера, в Европе он был поначалу запрещен под давлением экологических организаций большинства стран из опасения, что это устройство позволит в мгновение ока выловить всю рыбу в не столь обширных, как, например, Великие озера, западноевропейских водоемах. Однако очень скоро стало ясно, что эхолот не ловит рыбу. Это лишь прибор для определения рыбьих стоянок и подводного рельефа. Применение эхолотов было легализовано, и в настоящий момент осталось всего несколько стран (например. Франция), где использование эхолотов запрещено, да и те находятся на грани принятия разрешительного закона.

Заканчивая разговор об этом полезном и весьма желательном в арсенале любого удильщика приборе, хочу напомнить, что успех в конечном счете зависит от ваших навыков, применяемых снастей и, главное, «желания» рыбы попасть на крючок.

Не пытайтесь, глядя на экран эхолота, попасть рыбе блесной точно по голове, а разбирайтесь с подводным рельефом и характером дна, с горизонтом, в котором стоит рыба, и тогда удача обязательно будет с вами!

Оцените статью
Adblock
detector