- Принцип работы эхолота
- В чем состоит принцип работы эхолота?
- От чего зависит качество работы эхолота?
- Что такое эхолот принцип работы
- Как работает эхолот — основы
- Как работает датчик искателя рыб?
- GPS-плоттеры и картплоттеры
- Экран
- Как рыба выглядит на экране эхолота?
- Интерпретация 2D эхолота
- Почему такие вещи, как стаи рыб, выглядят как капли на 2D сонаре?
- Как выглядит твердое дно на 2D сонаре?
- Как рыба выглядит на сонаре?
- Должен ли я использовать Fish ID?
- Интерпретация DownScan Imaging
- Как выглядит твердое дно при нижнем сканировании?
- Интерпретация SideScan Imaging
- Простыми словами о современных эхолокационных технологиях, или что такое BroadBand, DownScan, StructureScan, CHIRP
- Старая добрая классика: Broadband, 2D Sonar
- Что такое нижнее сканирование
- Что такое боковое сканирование
- Что такое CHIRP?
Принцип работы эхолота
Ошибочно думать, что имея эхолот удастся заставить рыбу самостоятельно попасться на крючок. Но использование эхолокаторов намного упрощает процесс рыболовства.
Впервые это устройство было создано во время второй мировой войны для слежки за передвижением вражеских подлодок. Сегодня их использование имеет множество направлений и помогает крупным суднам отслеживать траекторию, обходя опасные участки. А рыболовы с помощью таких устройств определяют рельеф дна, температуру воды и места скопления рыб.
В чем состоит принцип работы эхолота?
Чтобы выяснить, как работает эхолот для рыбалки, и какие процессы лежат в его основе, необходимо выяснить из каких частей он состоит.
Схема эхолота состоит из четырех основных блоков: передатчика, преобразователя, приемника и экрана.
Передатчик, погруженный в воду, испускает ультразвуковые волны определенной частоты. Рассеиваясь в воде, волна встречает на своем пути препятствия в виде рыб, водорослей, камней, рифов и дна. Отталкиваясь от этих поверхностей, она возвращается обратно к преобразователю.
Скорость распространения звука под водой – величина постоянная. В зависимости от того, на какой глубине находится объекты, волны затрачивают определенное время на отражение. Именно благодаря подобным расчетам удается с точностью определить глубину и рельеф дна, препятствия на пути и наличие рыбы. Звук эхолота практически не восприимчив для человека и рыбы, так что можно не беспокоиться, что испускаемые волны распугают всю живность.
От чего зависит качество работы эхолота?
В некоторых случаях на качество передаваемого импульса влияет состав воды. В соленой воде, из-за большого содержания растворенных минеральных веществ, передача волн проходит намного интенсивнее, чем в чистой. Также, на качество сигнала и глубину его проникновения влияет его частота. Низкочастотные электрозвуковые волны способны проникать на большую глубину, нежели сигналы более высокой частоты. Но они более подвержены воздействию помех.
Каким бы слабым не был обратный сигнал, собранный на преобразователь, он усиливается в приемнике и трансформируется в электрический сигнал, удобный для анализа. Именно этот сигнал отражается на экране устройства и показывает не только глубину, объекты, а также определят температуру воды. Информация передается в виде графического изображения. На этом и основывается работа эхолота. Видео он не записывает, а лишь отображает изменения показателей датчика.
Этот процесс происходит непрерывно, и датчик постоянно испускает волны. Благодаря этому удается отслеживать передвижения рыб и получать наиболее актуальную картину о состоянии дна. Даже если удается выяснить расположение рыбы, устройство не способно определить ее вид. Невозможно однозначно сказать показан ли сом на эхолоте или другая рыбешка. Это можно понять по поведенческим характеристикам водных обитателей.
Для удобства, некоторые виды эхолотов издают звук, когда мимо датчика проплывает рыба. А более современные устройства могут передавать изображение на экран в трехмерной визуализации.
В зависимости от условий, типа рыбалки и глубины водоема, можно самостоятельно выбирать режим работы и корректировать настройки эхолота. Более подробную информацию о строении устройства и правилах его эксплуатации можно найти в инструкции к эхолоту.
Что такое эхолот принцип работы
Современные эхолоты — это небольшие компьютеры со специальным программным обеспечением, разработанным для того, чтобы показать пользователю, что происходит под лодкой и вокруг нее. Не все рыбаки разбираются в компьютерных технологиях, поэтому неудивительно, что многие люди не понимают основ работы эхолота.
Честно говоря, мы считаем, что производители эхолотов должны лучше обучать своих продавцов, так как интернет полон мифов и неточной информации. Если вы считаете, что плохо знаете, как читать свой новый эхолот, то данная статья может помочь вам понять, как работает эхолот и как начать понимать то, что происходит на экране.
Как работает эхолот — основы
Большинство эхолотов сейчас комбинированы с картплоттером, то есть они поставляются с головным устройством, GPS-приемником (внешним или внутренним) и датчиком эхолота. Существует также множество аксессуаров, которые можно подключить к эхолоту, например, различные сетевые устройства, дополнительные датчики и тд. В этом руководстве будут рассмотрены только основные функции, которые вы могли бы получить из коробки.
Как работает датчик искателя рыб?
Если дисплей является мозгом системы, то датчик является глазами и ушами. Датчик эхолота — это настоящий разведчик по обнаружению того, что находится под лодкой и вокруг нее, который отправляет данные на головное устройство, а программное обеспечение просто отрисовывает их их на экране.
Датчики бывают самых разных форм и размеров, но все они выполняют одну и ту же основную функцию. У них есть пьезоэлектрические элементы (например, керамика), которые вибрируют на определенных частотах, излучая звуковые импульсы в толщу воды. У каждого пьезоимпульса есть обратный сигнал. Время и сила возврата преобразуются в электрический сигнал для обработки головным устройством. Вот что такое Сонар (Звуковая навигация и поиск).
Элементы преобразователя бывают разных размеров и форм в зависимости от рабочих частот. Традиционный 2D эхолокатор использует элементы круглой формы, в то время как элементы высокоимпульсного CHIRP сканирования обычно имеют прямоугольную форму для создания тонких высокочастотных сигналов, необходимых для формирования изображения. Элементы CHIRP могут работать в более широкой полосе частот, называемой широкополосным эхолотом.
GPS-плоттеры и картплоттеры
Если ваш искатель рыб имеет возможность работы с GPS, он может определить ваше местоположение и определять его на карте. Большинство ведущих эхолотов сегодня используют внутренний приемник GPS, но внешний приемник позволяет отслеживать направления движения судна даже на очень медленных скоростях. Хороший GPS и навигационная карта — очень полезный инструмент для рыбалки. Он отлично подходит для навигации в неизвестной акватории, поиска мест для рыбалки и создания путевых точек, чтобы иметь возможность вернуться к этим точным точкам позднее.
Более новые эхолоты компании Lowrance оснащены специальным программным обеспечением, которое позволяет рыболову создавать собственные карты глубин, используя датчик, подключенный к устройству. Все, что вам нужно сделать, это проходить по необходимой области галсом, и программное обеспечение построит карту. Это похоже на магию, наблюдая, как контуры отрисовываются по мере движения.
Экран
Эхолоты имеют размеры дисплея обычно от 4 до 16 дюймов. Чем больше экран, тем больше информации вы можете просматривать одновременно. На 5-дюймовом экране трудно одновременно просматривать картплоттер и эхолот, но на 9-дюймовом или более крупном, режим разделенного экрана выглядит превосходно.
Другой момент, который следует учитывать при выборе размера, — это плотность пикселей. Чаще всего модели в размерах 5, 7 и 9 будут иметь одинаковое разрешение. В настоящее время ведущие производители используют дисплеи с разрешением 800 × 480 пикселей на экранах размером 5, 7 и 9 дюймов. Чем больше диагональ экрана, тем меньше плотность пикселей, а значит изображение становится менее четким. Большинство людей считают, что увеличение размера значит увеличение разрешения, но это не так. Лучше всего выбирать размер экрана, поставив два устройства разных размеров перед собой.
Как рыба выглядит на экране эхолота?
Чтение экрана эхолота — одна из основ, которую каждый должен изучить, но каким-то образом часто многие забывают об этом. Меня всегда удивляет встреча с кем-то, у кого есть эхолот за 50-100 тысяч рублей, но он не знает, как правильно им пользоваться. Не нужно так делать, изучите вопрос, прежде чем брать устройство, которым вы не будете пользоваться в полной мере, проигнорировав это.
Интерпретация 2D эхолота
Традиционный эхолот использует луч в форме конуса для сканирования. Угол раскрытия конуса зависит от частоты. 200 кГц имеет более узкий конус, чем 83 кГц, и, следовательно, имеет меньшую зону покрытия, однако большую детализацию. В то время как 83 кГц имеют лучшую дальность сканирования.
Эхолот постоянно сканирует толщу воды, а затем рисует результаты на экране. Самые новые области сканирования находятся справа, а старые перемещаются влево. Теперь представьте, что вы сидите неподвижно, глубина будет неизменной, а дно будет выглядеть плоским, потому что вы сидите над одним и тем же местом. Если через конус проплыт крупная рыба, она будет выглядеть как дуга на экране. Дуга образуется потому, что расстояние до рыбы на внешней стороне конуса больше, чем непосредственно в середине.
Почему такие вещи, как стаи рыб, выглядят как капли на 2D сонаре?
Камни, деревья и плотные стаи рыб могут выглядеть как неразличимые капли. Причина этого в том, что датчик улавливает все, что находится внутри конуса. У сонара DownScan Imaging намного более узкий луч, возвращающий только то, что находится в узком срезе луча, что создает реалистичные изображения.
Как выглядит твердое дно на 2D сонаре?
В зависимости от вашей цветовой палитры твердое дно будет иметь ярко-желтый цвет, а под ним — более толстая синяя полоса.
Как рыба выглядит на сонаре?
Рыба может выглядеть как круглые точки, дуги или облака, если они являются приманкой. Крупная рыба будет иметь сплошной цвет в центре, потому что большая рыба имеет твердую массу, чтобы дать сильный сигнал.
Должен ли я использовать Fish ID?
Рыба ID спорная функция, но это действительно может помочь вам определить, где рыба по отношению к вашему датчику. Несмотря на это, многие рыболовы предпочитают не загромождать экран символами рыбы и предпочитают интерпретировать самих рыб.
Интерпретация DownScan Imaging
Как выглядит рыба при нижнем сканировании? Это, вероятно, наиболее часто задаваемый вопрос о том, как понимать DownScan, поскольку он отличается от традиционного сонара, к которому привыкли большинство людей. Рыбы выглядят так же, как и на двумерном гидролокаторе, только меньше по размеру, потому что нижний луч — охватывает узкую часть толщи воды. Рыба будет выглядеть как маленькие овалы или кружочки, вокруг сорняков или коряги.
Как выглядит твердое дно при нижнем сканировании?
Твердое дно очень легко увидеть на изображении. В зависимости от вашей цветовой палитры он будет выглядеть немного ярче, чем мягкое дно, и под ним будет более толстая полоса цвета.
Интерпретация SideScan Imaging
Как выглядит рыба при боковом сканировании структуры? В данном режиме рыбу заметить немного сложнее, поскольку боковые лучи изображения смотрят в сторону, а не под лодкой, плюс чаще данный режим используется для поиска рыбы по второстепенным признакам. Однако рыба будет отделяться более яркими оттенками, а если вы вообще не увидите ее на экране, то нужно следить за тенью, от объектов. Расстояние между рыбой и тенью может сказать вам, где находится рыба. Рыба, которая крепко прижимается к плотному дну, будет смешиваться с общим фоном и ее будет трудно заметить, но рыба, которая находится у мягкого дна будет выделяться более яркими тонами. Приманка же будет выглядеть как ватные шарики.
Простыми словами о современных эхолокационных технологиях, или что такое BroadBand, DownScan, StructureScan, CHIRP
Принцип работы эхолота прост. Датчик излучает в воду ультразвуковой сигнал. Тот доходит до препятствия и отражается от него. Датчик принимает отраженный сигнал и фиксирует время, которое прошло между излучением и приемом t. Зная скорость распространения звука в воде v, можно посчитать расстояние до препятствия по формуле S=v*t/2. Почему делим на два? Потому что сигнал прошел двойное расстояние, туда и обратно.
Однако рыболову, желающему в наше время впервые приобрести эхолот, приходится сталкиваться с большим количеством непонятных терминов. 2D сонар с чирпом, даунскан, SideVü, голова идет кругом, и жалко тратить время для перелопачивания большого количества интернет-ресурсов, чтобы во всем разобраться. Поэтому мы решили написать статью, в которой простым языком, в одном месте и по возможности кратко будет рассказано обо всех этих чудесах эхолокации.
Старая добрая классика: Broadband, 2D Sonar
Начнем мы сначала, с классического эхолота. То, что теперь называется BroadBand, 2D, эхолот, широкополосный эхолот, сонар, классический сонар. Технология старая, но не потерявшая своей актуальности! В чем ее особенность?
Особенность в том, что датчик излучает сигнал в форме конуса. Выглядит это примерно так:
Рис.1 Классический двухлучевой эхолот
Здесь показан пример двухлучевого эхолота с лучами 20 и 60 градусов. Более широкий луч просвечивает больший объем воды и видит больше рыбы. Зато в этом луче не видеть ничего на дне, кроме плавного изменения глубины, все детали дна замываются. Узкий луч рисует дно более подробно, чем широкий, но рыбу ищет хуже.
Рыба на экране классического эхолота показывается в виде дуг. На рисунке ниже показано, почему так происходит.
Рис.2 Как формируются дуги
Пусть лодка движется, а рыба неподвижна. Рыба попадает в край луча в точке А, затем проходит через центр В и затем выходит из луча в точке С. В моменты А и С рыба находится дальше от датчика, чем в момент В, когда рыба близка к оси конуса излучения (в этот момент расстояние от рыбы до датчика минимально). Так и образуется дуга на экране.
Преимущества классического эхолота: большой объем просвечиваемой датчиком воды, легче найти рыбу, светит глубоко (несколько сотен метров – не проблема).
Недостатки классического эхолота:
- Низкая детализация дна. Все выделяющиеся объекты, размеры которых меньше размера пятна, “подсвечиваемого” на дне, будут видны на экране как плавный холм с размерами около размера пятна. Вся детализация потеряется.
- Невозможно понять, в каком направлении находится рыба или любой объект, от которого отразился сигнал, известно только расстояние до нее.
- Кроме того, недостатком классического эхолота является наличие мертвых зон. Если, например, глубина начинает резко увеличиваться, то сигнал отражается от верхней бровки, а ниже бровки все объекты не показываются. Если на ровном дне стоит высокий узкий камень, то сигнал отражается от вершины камня, и рыба, стоящая на дне у камня, не видна.
Рис.3 Мертвая зона
Мертвая зона существует даже при ровном дне. На рисунке показано, какая рыба будет видна на экране эхолота, а какая сохранит свое присутствие в тайне, потому что находится в мертвой зоне.
Что такое нижнее сканирование
Мысль конструкторов не стояла на месте, и несколько лет назад появились принципиально другие эхолоты, форма луча которых напоминает не конус, а дольку лимона.
Рис.4 Форма луча классического эхолота и эхолота нижнего сканирования DownScan
На рисунке представлен пример эхолота, совмещающего в себе один классический луч, и один луч нижнего сканирования. Здесь необходимо сказать, что разные производители по-разному называют эту технологию. У Garmin это СlearVü (Vü – видимо, от View), у Lowrance это DownScan, у Humminbird – DownImage. Но суть везде одна: датчик излучает луч не в форме конуса, а в очень узком в продольном и широком в поперечном направлении. Что получает при этом рыболов, и что он теряет?
Проще начать с того, что теряется. Объем просвечиваемой воды гораздо меньше, чем в случае классического эхолота. Поэтому, если вы ловите с якоря, в луч будет попадать гораздо меньше рыбы. В продольном направлении угол раствора луча составляет буквально несколько градусов, шаг вперед-назад, и рыба в луч не попадает. При ловле с якоря DownScan ничего не дает, и в этом случае лучше пользоваться обычной классикой.
Совсем другое дело при ловле в движении или во время поиска рыбы. Тут преимущества DownScan проявляются во всей красе. За счет того, что луч в направлении движения лодки очень узкий, разрешение картинки у DownScan гораздо выше, чем у классического эхолота.
Рис.5 Пример картинки с DownScan
Пример картинки с Lowrance Elite DSi. Детализация, при которой на затопленных деревьях видна каждая веточка. Для классического эхолота такая детализация недостижима в принципе. Вместо дерева на экране был бы размытый бугор.
Рис.6 Еще один пример картинки с DownScan
Еще один пример – упавшее дерево на DownScan. А под ним стоит стая рыб.
Не будем перегружать статью красотами подводного мира, любой желающий может самостоятельно набрать в строке поиска браузера DownScan Imaging и насладиться видами затопленных кораблей, автомобилей, мостов, деревьев, камней и прочего.
Но как же DownScan отображает рыбу? В случае классического эхолота рыба показывалась дугами. Рыба входила в конус, проплывала его за довольно продолжительное время (или конус проходил через рыбу), за это время рисовалась дуга. Теперь конуса нет, луч узкий, при движении лодки рыба попадает в луч на короткое время и тут же выходит из него. И на экране эхолота она видна не как дуга, а как пятно. Стая малька может выглядеть как облачко. Пример ниже.
Рис.7 Рыба на классическом эхолоте и на DownScan
Слева на экране панель классического эхолота, справа – DownScan. Видно, что классический эхолот даже не отделил рыбу от дна, возможно из-за того, что рыба находится в мертвой зоне. Однако DownScan при проходе поперек бровки четко показал как стайку мелочи (показана зелеными стрелками), так и отдельных более крупных рыб (показаны черными стрелками).
Если рыба крупная, и удачно сориентирована по отношению к лучу, то можно наблюдать и такую картинку:
Рис. 8 Примеры отображения крупных рыб на DownScan
Размер пятна рыбы на экране зависит от времени пересечения рыбой луча DownScan. Чем крупнее рыба, и чем медленнее она движется относительно лодки, тем след крупнее.
Как видите, качество изображения по сравнению с классикой отличается как день от ночи. Необходимо отметить, что для наилучших результатов при использовании технологии DownScan лодка должна двигаться медленно и равномерно, чтобы луч DownScan работал как оптический сенсор копировального аппарата.
Преимущества DownScan:
Недостатки DownScan:
- Просвечивает меньший объем воды по сравнению с классическим эхолотом.
- Луч DownScan не проникает так глубоко, как луч классического эхолота, всего до 90-100 метров. Для нашей страны и рыбалки в реках и озерах это не очень актуально.
Пример приборов, совмещающих классический сонар и нижнее сканирование: Garmin Striker Vivid 4cv и эхолот-картплоттер Garmin Echomap UHD 63cv.
Что такое боковое сканирование
Возьмем два луча DownScan и направим их не вниз, а направо и налево. Мы получили боковое сканирование. И снова необходимо сказать, что разные производители по-разному называют эту технологию. У Garmin это SideVü, у Lowrance это StructureScan, у Humminbird – SideImage. Названия разные, суть одна.
Рис.9 Форма лучей эхолота с боковым сканированием StructureScan
На рисунке показан пример эхолота, имеющего в арсенале двухлучевую классическую часть и два луча бокового сканирования. На самом деле датчики бокового сканирования обычно включают в себя и нижнее сканирование, но сейчас это неважно. Итак, мы видим два узких луча, светящих в стороны от лодки. Как показать на экране все богатство информации, которую получает теперь эхолот? Для этого придется сменить точку зрения. 🙂 Если в случае классики и нижнего сканирования мы смотрели на толщу воды сбоку, то теперь смотрим на воду сверху. Если раньше лодка на экране находилась вверху справа, а развертка осуществлялась справа налево, то теперь лодка находится в верхней части экрана посередине, а развертка идет вниз.
Рассмотрим подробнее, что показывает нам экран эхолота, работающего в режиме StructureScan.
Рис.10 Пример картинки с экрана эхолота с боковым сканированием StructureScan
Вот пример такой картинки. Развертка, напоминаем, сверху вниз, лодка наверху посередине экрана. Формируется такая картинка следующим образом. Столб воды вместе с дном по обе стороны от лодки развертывается в одну плоскость и показывается на экране.
Рис.11 Как формируется картинка на экране StructureScan — что чему соответствует
В результате от середины (A) экрана в обе стороны до точки (С) показан столб воды (B) под лодкой. Он отображен темной полосой посередине экрана. Полуширина этой полосы равна глубине. На нашем примере на рис. 10 глубина составляет примерно 30 футов. Дальше к краям экрана уходит дно. Обратите внимание, что стоящие на нем объекты отбрасывают тени, как будто мы светим фонарем в стороны от лодки. Собственно, мы им и светим, только фонарь у нас не оптический, а ультразвуковой. Более светлые места на экране – это участки, от которых луч отразился сильнее. Темные участки – это тени от возвышающихся объектов, от них луч отразился слабее. Получается будто мы смотрим на осушенное дно сверху, подсвечивая его сбоку, видим все объекты на дне с отбрасываемыми ими тенями, а вода куда-то исчезла. На нашем примере на рис. 10 слева от лодки мы видим крупные валуны и стволы деревьев, а справа – отдельно стоящие затопленные деревья с ветками.
Как и в случае с DownScan, отсылаем читателя в поиск по интернету для ознакомления с другими красивыми картинками со StructureScan, здесь лишь кратко остановимся на том, как StructureScan показывает рыбу.
Рис. 12 Стаи рыбешки на StructureScan
Стаи рыбьей мелочи прямо под лодкой на StructureScan (слева), DownScan (справа наверху) и классический эхолот (справа внизу). Автор снимка предполагает, что форма этих стай в виде полумесяцев прямо указывает на то, что на мелкую рыбу охотится крупная рыба, и мелочь старается увернуться. Помним видео охоты марлинов на стаю мелкой сельди, и как стая изменяет форму при атаках хищника? Вот тут тоже самое.
Рис.12 Рыба в боковых лучах StructureScan
На рис.12 глубина около 15 футов. Слева в боковом луче видна стая рыбы в толще воды (в толще, потому что теней не видно, они за границей экрана). Справа видны светлые черточки с тенями – более крупная рыба у дна.
Как видно из приведенных примеров, идентификация рыбы на DownScan и StructureScan более сложна, чем на классическом эхолоте. Тут вам нет никаких четких дуг, и тем более режима Fish ID. Интерпретация картинки требует определенного опыта. Здесь я не буду распространяться далее на эту тему, желающим узнать больше советую познакомиться со статьями Сергея Никулина “Видовая идентификация рыб с помощью рыбопоисковых технологий Lowrance” и “StructureScan: next level”.
Что такое CHIRP?
Ну и наконец последнее, о чем мы поговорим в этой статье, это технология CHIRP. Предыдущие технологии отличались друг от друга формой и направлением луча. CHIRP же – это не про луч, а про частоту излучения сигнала. CHIRP расшифровывается как Compressed High-Intensity Radiated Pulse — сжатый высоко-интенсивный излученный импульс. Эхолот без CHIRP излучает короткие импульсы на одной частоте. Эхолот CHIRP излучает более длинный сигнал в диапазоне частот (частотно-модулированный сигнал).
Что это дает рыболову? Прибор обрабатывает отраженный сигнал сразу на нескольких частотах и извлекает из него больше информации. По утверждению производителей при этом улучшается шумоподавление, растет чувствительность, становится возможным различать рядом стоящих отдельных рыб (улучшается разделение целей). На практике же разница между эхолотами без CHIRP и с ним невелика, особенно на небольших глубинах. По крайней мере нам не удалось найти источники, в которых ясно демонстрируется безоговорочное преимущество CHIRP в сравнительном анализе с эхолотом без CHIRP.
Рис. 13 Сравнение CHIRP и не CHIRP
На рис. 13 показан пример сравнения . Слева – картинка с CHIRP, справа – с обычного эхолота на частоте 145 кГц. Никакой разницы не видно. У дна стоит стая некрупной рыбы.
В настоящее время практически все эхолоты используют технологию CHIRP, причем как в классическом сонаре, так и в нижнем и боковом сканированиях.